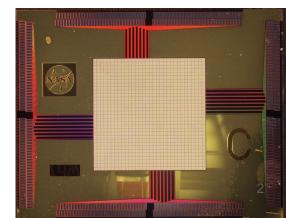
# Cryogenic Solid-State Detectors

## for Dark Matter Searches and beyond

Ziqing Hong, University of Toronto 33rd Rencontres de Blois on "Exploring the Dark Universe"


### Cryogenic Crystal Detectors are used in

- Particle Physics
  - Dark Matter Detectors
  - Neutrino Physics
    - Coherent Elastic Neutrino Nucleus Scattering (CEvNS) and neutrinoless double-beta decay (0vββ)
- Astrophysics
  - mm to gamma-ray energies









### Disclaimer

- This is my personal biased view focusing on detectors working at < 1 K
- Lots of efforts ongoing with solid-state detectors for dark matter search efforts, a good fraction of them utilizing "cold" to battle against "noise".
  - CCD-based detectors
  - High Purity Germanium detectors

0 ...

- Also lots of fantastic cryogenic detectors I will likely fail to include here
- Apologies for efforts that I missed in this discussion

### Hidden Sector Particles

|                   | ALPs              |                   | Axions                   |                               |                                | Sterile<br>v's                |                          | WIMPs           |                  |      |
|-------------------|-------------------|-------------------|--------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------|-----------------|------------------|------|
| feV               | peV               | neV               | μeV                      | meV<br>Dark                   | eV<br>Matter N                 | keV<br>Mass                   | MeV                      | GeV             | TeV              | PeV  |
| 10 <sup>-46</sup> | 10 <sup>-40</sup> | 10 <sup>-34</sup> | 10 <sup>-28</sup><br>Max | 10 <sup>-22</sup><br>Recoil I | 10 <sup>-16</sup><br>Energy in | 10 <sup>-10</sup><br>Silicon  | 10 <sup>-4</sup><br>[eV] | 10 <sup>2</sup> | 10 <sup>5</sup>  | 105  |
| 10 <sup>26</sup>  | 10 <sup>23</sup>  | 10 <sup>20</sup>  | 10 <sup>17</sup><br>Dark | 10 <sup>14</sup><br>Matter Pa | 10 <sup>11</sup><br>article De | 10 <sup>8</sup><br>ensity per | 10 <sup>5</sup><br>Liter | 10 <sup>2</sup> | 10 <sup>-1</sup> | 10-4 |

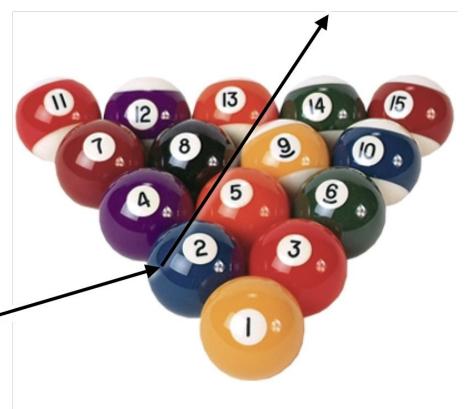
### Hidden Sector Particles

|                   | ALPs              |                   | Axions                   |                                |                                | Sterile<br>v's                |                            | WIMPs           |                  |      |
|-------------------|-------------------|-------------------|--------------------------|--------------------------------|--------------------------------|-------------------------------|----------------------------|-----------------|------------------|------|
| feV               | peV               | neV               | μeV                      | meV<br>Dark                    | eV<br>A Matter M               | keV<br>Mass                   | MeV                        | GeV             | TeV              | PeV  |
| 10 <sup>-41</sup> | 10 <sup>-35</sup> | 10 <sup>-29</sup> | 10 <sup>-23</sup><br>Ma  | 10 <sup>-17</sup><br>x Electro | 10 <sup>-11</sup><br>on Recoil | 10 <sup>-5</sup><br>Energy [  | 10 <sup>0</sup><br>[eV]    | 10 <sup>1</sup> | 10 <sup>1</sup>  | 101  |
| 10 <sup>26</sup>  | 10 <sup>23</sup>  | 10 <sup>20</sup>  | 10 <sup>17</sup><br>Dark | 10 <sup>14</sup><br>Matter Pa  | 10 <sup>11</sup><br>article De | 10 <sup>8</sup><br>ensity per | 10 <sup>5</sup><br>r Liter | 10 <sup>2</sup> | 10 <sup>-1</sup> | 10-4 |
|                   |                   |                   |                          |                                |                                | Ele                           | ectron                     | N               | luclear          |      |

Recoils

**Recoils** 

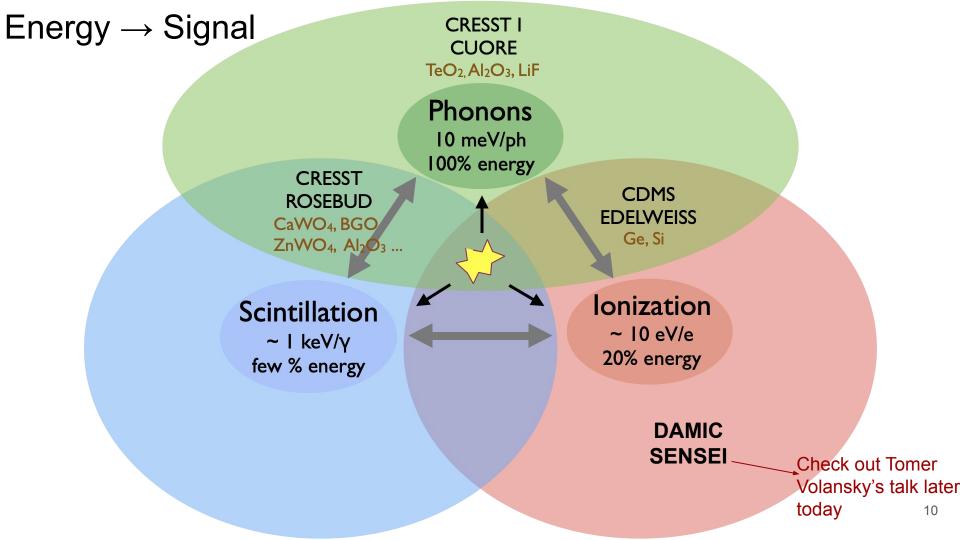
Hidden Sector Particles

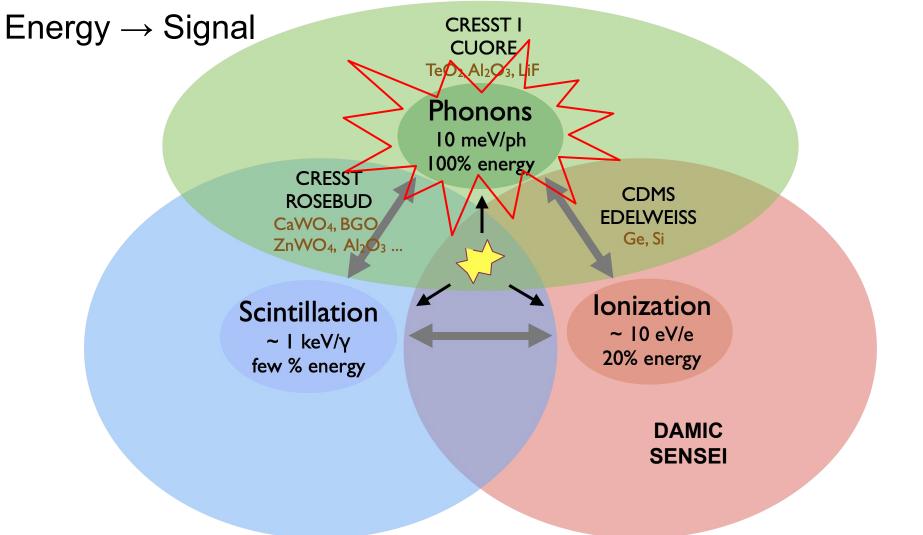

|                   | ALPs              |                   | Axions            |                   |                         | Sterile<br>v's         |                  | WIMPs              |                   |       |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|------------------------|------------------|--------------------|-------------------|-------|
| feV               | peV               | neV               | μeV               | meV<br>Dark       | eV<br>Matter l          | keV<br>Mass            | MeV              | GeV                | TeV               | PeV   |
|                   |                   |                   |                   | Durn              |                         | 1400                   |                  |                    |                   |       |
| 10 <sup>-41</sup> | 10 <sup>-35</sup> | 10 <sup>-29</sup> | 10 <sup>-23</sup> | 10 <sup>-17</sup> | 10 <sup>-11</sup>       | 10 <sup>-5</sup>       | 10 <sup>0</sup>  | 10 <sup>1</sup>    | 10 <sup>1</sup>   | 101   |
|                   |                   |                   | Ma                | x Electro         | n Recoil                | Energy [               | [eV]             |                    |                   |       |
|                   |                   |                   |                   |                   |                         |                        |                  |                    |                   |       |
| $10^{-10}$        | 10 <sup>-9</sup>  | 10 <sup>-8</sup>  | $10^{-7}$         | 10 <sup>-6</sup>  | 10 <sup>-5</sup>        | 10 <sup>-4</sup>       | $10^{-3}$        | $10^{-2}$          | $10^{-1}$         | 100   |
|                   |                   |                   | Mean              | Distance          | e Betwee                | n Particle             | es [m]           |                    |                   |       |
| 10 <sup>12</sup>  | 109               | 10 <sup>6</sup>   | 10 <sup>3</sup>   | 10 <sup>0</sup>   | 10 <sup>-3</sup>        | $10^{-6}$              | 10 <sup>-9</sup> | 10 <sup>-12</sup>  | 10 <sup>-15</sup> | 10-18 |
|                   |                   |                   | Dark              | Matter Pa         | <mark>arti</mark> cle W | av <mark>elengt</mark> | th [m]           |                    |                   |       |
|                   | _                 | rent/R<br>Detect  |                   | nt                |                         | ectron<br>ecoils       |                  | luclear<br>lecoils |                   |       |

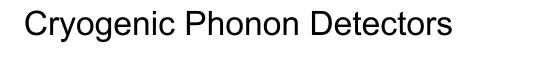
### Hidden Sector Particles

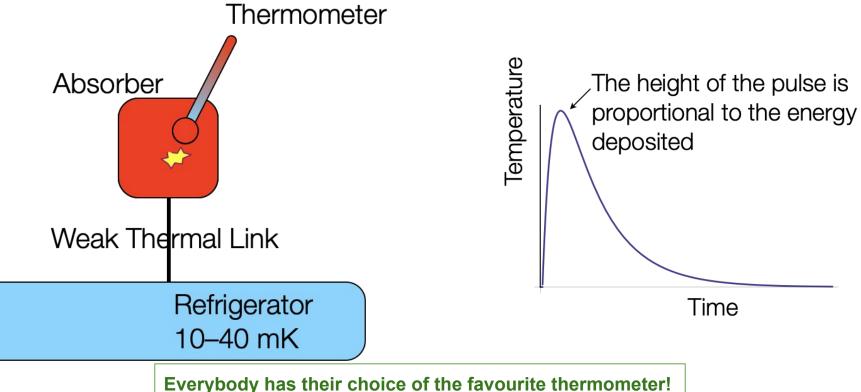
|                   | ALPs              |                  | Axions           |                          |                   | Sterile<br>v's   |                  | WIMPs            |                 |                   |
|-------------------|-------------------|------------------|------------------|--------------------------|-------------------|------------------|------------------|------------------|-----------------|-------------------|
| feV               | peV               | neV              | μeV              | meV                      | eV                | keV              | MeV              | GeV              | TeV             | PeV               |
|                   |                   |                  |                  | Dark                     | Matter            | Mass             |                  |                  |                 |                   |
| 10 <sup>-41</sup> | $10^{-35}$        | $10^{-29}$       | $10^{-23}$       | <b>10</b> <sup>-17</sup> | 10 <sup>-11</sup> | 10 <sup>-5</sup> | 10 <sup>0</sup>  | 10 <sup>1</sup>  | 10 <sup>1</sup> | 10 <sup>1</sup>   |
|                   |                   |                  |                  |                          |                   | Energy [         |                  |                  |                 |                   |
| $10^{-10}$        | 10 <sup>-9</sup>  | 10 <sup>-8</sup> | 10 <sup>-7</sup> | 10 <sup>-6</sup>         | 10 <sup>-5</sup>  | 10 <sup>-4</sup> | $10^{-3}$        | 10 <sup>-2</sup> | $10^{-1}$       | 100               |
|                   |                   |                  | Mean             | Distance                 | e Betwee          | n Particle       | es [m]           |                  |                 |                   |
| 10 <sup>12</sup>  | 10 <sup>9</sup>   | 10 <sup>6</sup>  | 10 <sup>3</sup>  | 10 <sup>0</sup>          | 10 <sup>-3</sup>  | 10 <sup>-6</sup> | 10 <sup>-9</sup> | 10-12            | $10^{-15}$      | 10 <sup>-18</sup> |
|                   |                   |                  | Dark             | Matter P                 | article W         | Wavelength [m]   |                  |                  |                 |                   |
|                   | Coherent/Resonant |                  |                  |                          |                   |                  |                  | iquid N          |                 |                   |
|                   |                   | Detect           | ion              |                          |                   | Detectors expe   |                  |                  | experin         | nents             |

### Dark matter direct detection


- Dark matter particle interaction deposits energy
- Detectors measure energy in forms of
  - $\circ \quad \text{Ionization} \rightarrow \text{Charge}$
  - $\circ \quad \text{Scintillation} \rightarrow \text{Light}$
  - Heat  $\rightarrow$  Phonons
- Stealth signal calls for sensitive detectors

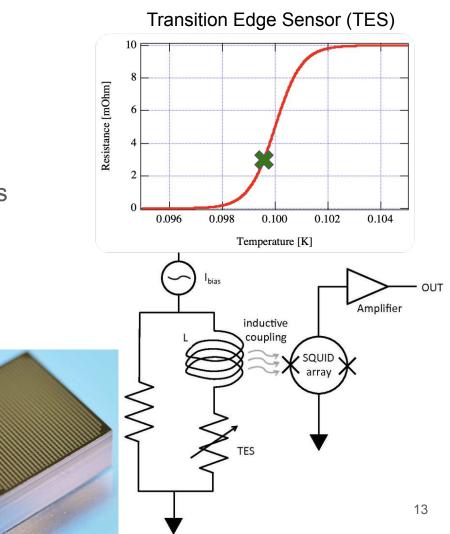




### Why Use Cryogenic Crystal Detectors?

- Cryogenic detectors can provide a unique combination of energy sensitivity, low threshold and efficiency
- Exploiting the fundamental idea of lower temperature
  - $\rightarrow$  Lower amount of random motions
  - $\rightarrow$  Lower noise
  - $\rightarrow$  Better energy sensitivity & low threshold
- Nal CZT energy-CdTe dispersive **HPGe** AMA. gamma-ray detectors TES 85% <sup>239</sup>Pu 239Pu 40 60 80 100 120 140 160 180 200 220 Energy (keV)
- Well matched to DM detection requirements
- CEvNS and 0vββ experiments share the same needs, thus cryogenic detectors are often developed by these fields jointly





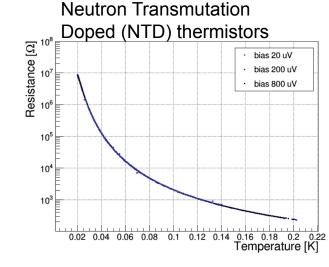


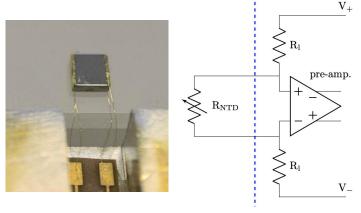



### **Transition Edge Sensor**

- Metal films, tuned to have suitable superconducting transition temperatures
- Operating in the middle of its transition
- Heat warms up the sensor
   → Increase in resistance
- Often read out by Superconducting QUantum Interference Devices (SQUIDs)
- High resistivity films can also be readout with FETs (schematics in next slide)



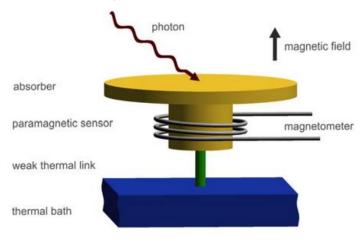

Thermometer #2


# Neutron Transmutation Doped (NTD) thermistors

- Doped germanium/silicon chips
- Resistance follows Efros-Shklovskii law:

$$R = R_0 e^{\sqrt{T_0/T}}$$

- Taking advantage of the steep slope at low temperature
- Also comes with high dynamic range
- Readout with FETs, operating at room temperature or in cold



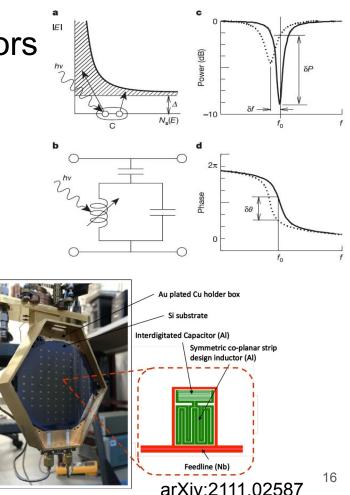



### Metallic magnetic calorimeter (MMC)

## • Paramagnetic sensor positioned in weak magnetic field

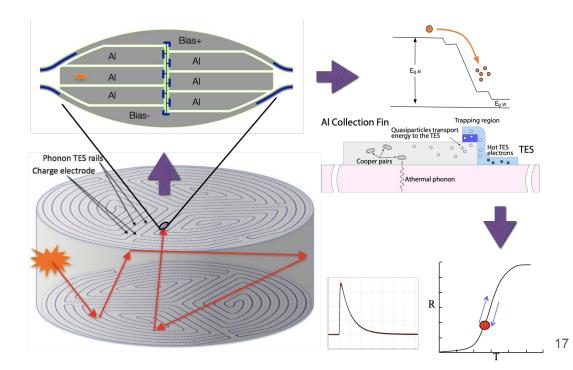
- Heat changes its induced magnetic field
- Readout by SQUIDs as magnetometer




TASC.2009.2012724

#### Metallic magnetic calorimeter (MMC)

Thermometer #4

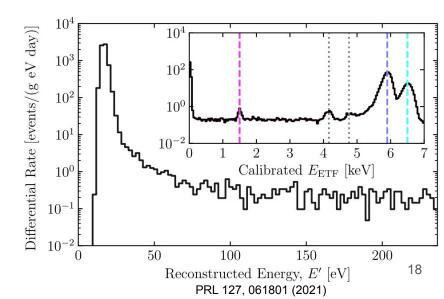

# Microwave Kinetic Inductance Detectors (MKIDs)

- Resonators made of superconducting metal films
- Resonance frequency and phase response depending on its temperature
- Radio-Frequency (RF) Readout system
- Intrinsic capability for multiplexing



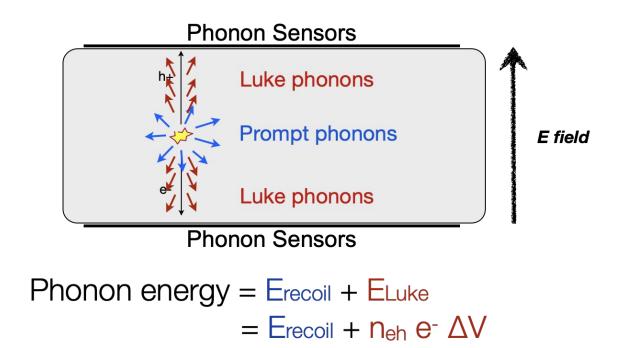
### Funneling Energy to the Phonon Sensors (QETs)

- Quasiparticle-trap-assisted electrothermal-feedback TES (QETs)
- Targeting at high energy athermal phonons before they down-convert
- Utilizing superconducting "fins" to trap phonons and funnel them to TES
- Fast (O(10 us)) detector response (in cryogenic detector sense)




### Cryogenic PhotonDetector (CPD)

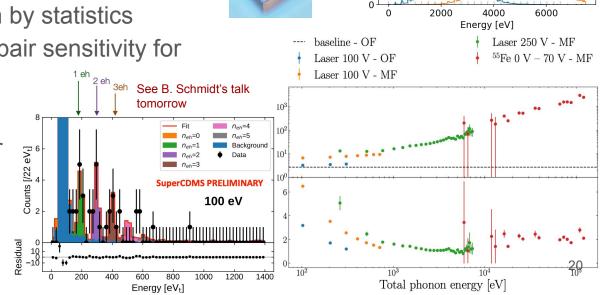
- 10 gram, silicon, QET-based
- One channel construction, easy to operate
- 3.9 eV phonon resolution
- Works great in both sensing photons and DM direct detection
- Future development by TESSERACT collaboration
  - See D. Mckinsey's presentation on Wed.




APL 118, 022601 (2021)



### Internal amplification - the NTL effect


Phonon sensors measure amount of charge produced: Phonon-based charge amplification!



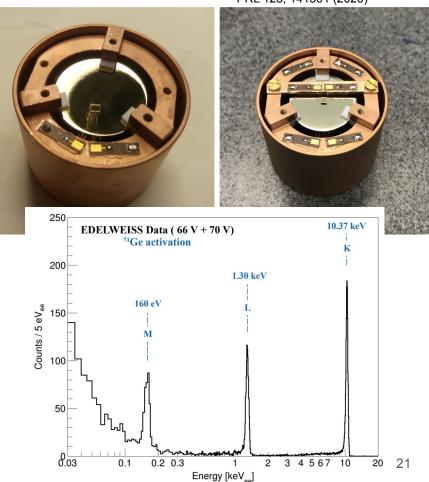
## SuperCDMS High Voltage eV sensitivity Detector (HVeV)

- 1 gram, silicon, QET-based, 2.7 eV resolution
- Can apply O(100 V) for NTL boost or operate at 0 V as pure phonon sensors
   Particle identification by statistics
- Quantized electron-hole pair sensitivity for both ER and NR
   1<sup>eh</sup> 2<sup>eh</sup> 3<sup>eh</sup> See B. S
- Scaling it up to 1 kg
   SuperCDMS HV detector



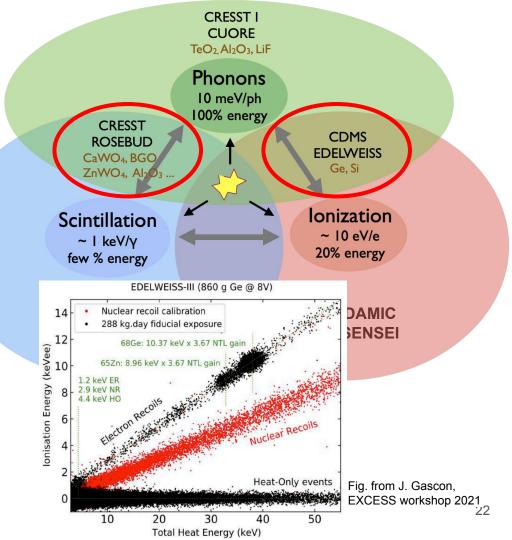


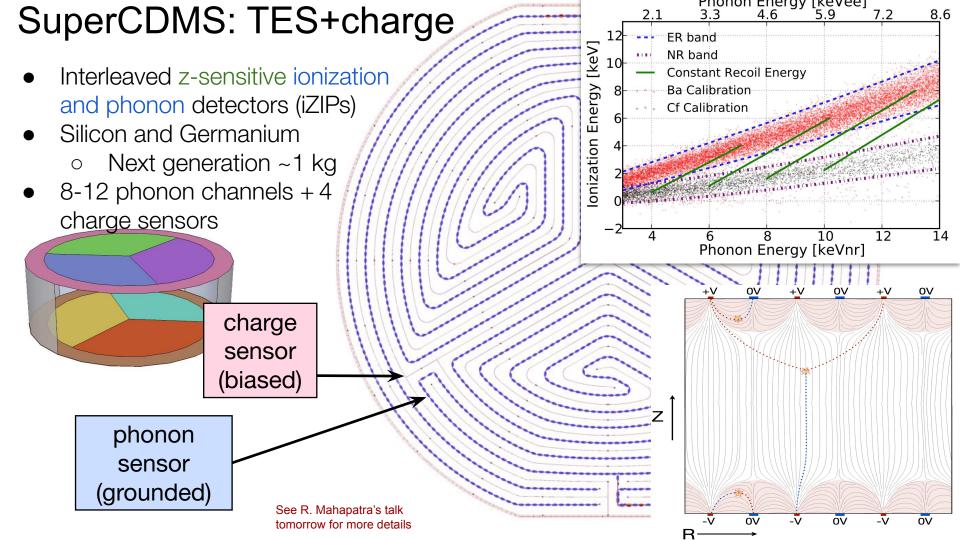
counts [/25e 0007 0007 PRD 104, 032010 (2021)


n\*251.9 eV laser low intensity

laser high intensity

Figures from arXiv: 2202.05097 PRD 99, 082003 (2019) PRL 125, 141301 (2020)


### Edelweiss: RED20 and RED30


- 33 gram, germanium, NTD-based
- 18 eV phonon resolution
- RED20 operated with no E-field
- RED30 employs NTL gain to boost signals
  - With a planar electrode design
  - 8 eVee at 160 eV, consistent with Fano fluctuations
- See E. Guy's presentation on Wed.



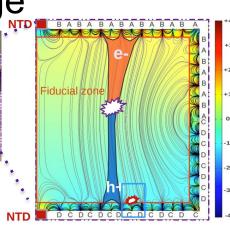
# Adding information for particle identification

- Electron recoil (ER): lots of charges and scintillation lights
  - Source: photons, electrons alphas, ER DM particles
- Nuclear recoil (NR): less charges and scintillation lights
  - Source: neutrons, WIMPs
- Heat only (newly realized category): well... heat (phonon) only...
  - Source: unknown
- Adding information sometimes degrades phonon information
  - Careful trade-off needed

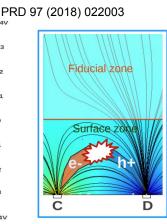


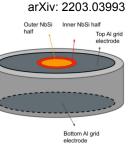


## EDELWEISS: NTD/TES + charge


- Fully Inter-Digitized (FID) detector
  - 800 g germanium
  - 2 NTD + 4 charge channels
- NbSi209
  - 200 g germanium
  - 2 TES channel + 2 charge planar electrodes

Height: 4cm

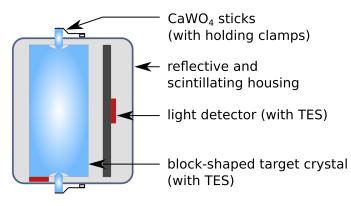

- TES vs NTD tests origin of the HO events
- Charge channels help rejecting HO events
- FID38 & PL38
  - Next-stage 38 gram germanium detectors, with NTD+charge
  - Expect better phonon and charge resolutions with cryogenic HEMTs

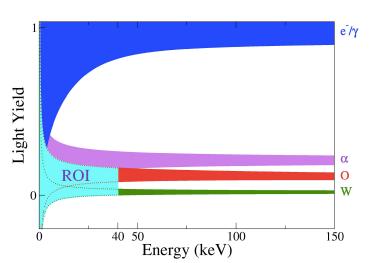


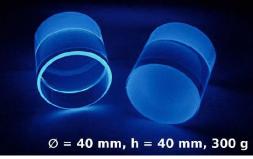

Width:7cm

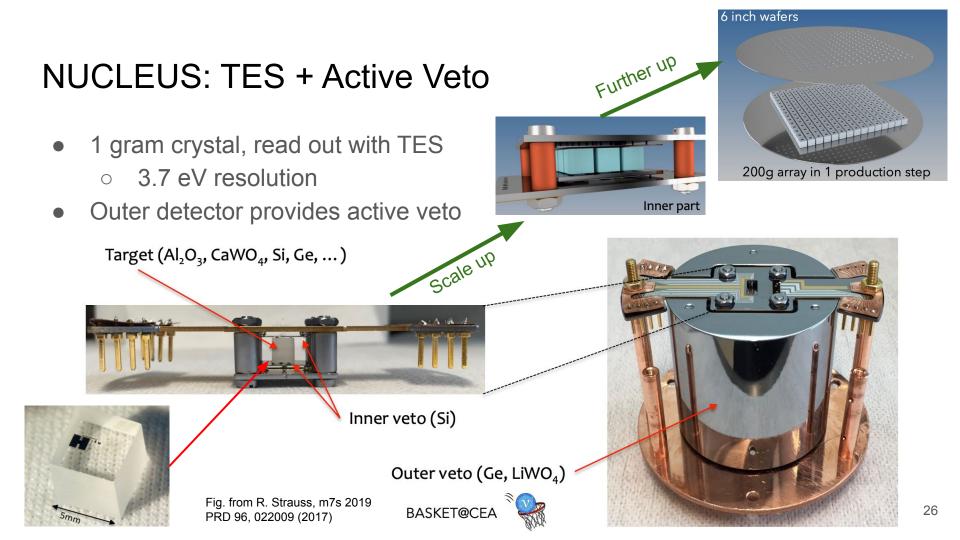






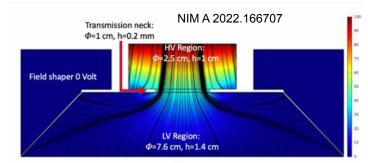


24

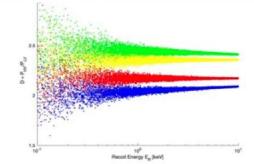

### CRESST: TES + Light + Active Veto

- CaWO<sub>4</sub> scintillating crystals, with phonon + light readout
- Mechanical structure instrumented with active sensors as well
- 300 g in CREST II  $\rightarrow$  24g crystal in CRESST III
  - 4.6 eV resolution



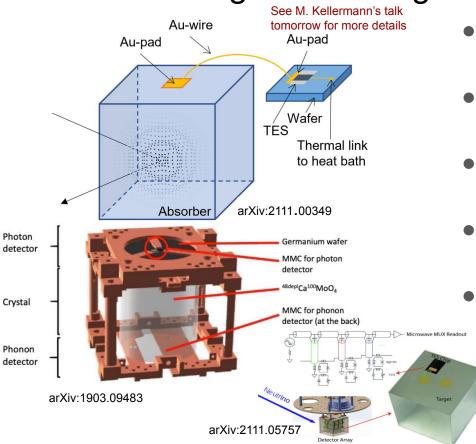





### **MINER: Hybrid Phonon detector**

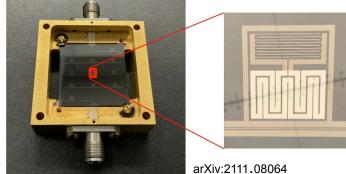
- Separate crystal into a low-voltage (LV) and a high-voltage (HV) region
- Phonon sensors on both sides
- Use the LV region as the fiducial volume
- Shape E-field to guide charges through the "neck"
- NTL phonons from the charges dominates in the HV side, whereas recoil phonons dominate the LV side
- E<sub>HV</sub>~ charge measurement
   E<sub>LV</sub> ~ recoil phonon measurement

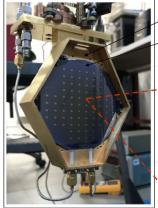

See R. Mahapatra's talk tomorrow for more details







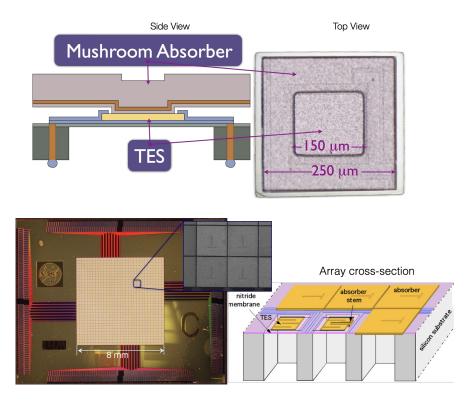

### Modular design: detaching thermometer from absorber




- Decoupling thermometer from crystals for ease of fabrication
- Thermal conduction facilitated by a gold wirebond
- Can be coupled to a wide variety of target materials
- RemoTES from COSINUS achieved
   <100 eV resolution with a 2-gram target</li>
  - Similar designs include
    - $\circ \quad \mbox{MMC based AMORE detector for} \\ 0 \nu \beta \beta$
    - TES-based Ricochet Qarray for CEvNS

28

### Multiplexing with RF resonators






| á                | arXiv:2111.08064                                                        |  |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Au               | Au plated Cu holder box                                                 |  |  |  |  |  |  |  |
|                  | Si substrate                                                            |  |  |  |  |  |  |  |
| Interdigita      | ted Capacitor (Al)<br>Symmetric co-planar strip<br>design inductor (Al) |  |  |  |  |  |  |  |
| 1                | Feedline (Nb)                                                           |  |  |  |  |  |  |  |
| arXiv:2111.02587 |                                                                         |  |  |  |  |  |  |  |

- Significant improvement has been made on mKIDs recently
- 6 eV resolution for energy deposited in resonator demonstrated
  - Translates to a few tens of eV of resolution for energy deposited in the crystal
- Also with intrinsic capability of multiplexing
   → Promising candidates for next generation rare-event experiments

### Cryogenic detector in Astrophysics and Indirect searches



- Cryogenic microcalorimeters also contributes in DM studies in astrophysics and indirect searches
- Arrays of eV-resolution sensors make perfect X-ray detectors

   Like an ultra-sensitive camera
- Widely used in earth-based X-ray telescopes as well as rocket and satellite-based detectors

### Conclusions

- Cryogenic detectors play an important role in dark matter search
   Both in direct search and in indirect and astro approaches
  - Both in direct search and in indirect and astro approaches
- Resistance-based phonon detectors (TES and NTD) are approaching an eV-resolution regime
  - Also exploiting techniques including quasi-particle traps and internal amplifications via NTL effect
- Alternative sensing mechanisms (MMC and mKIDs) are advancing as well
   Promising candidates for next-generation DM search detectors
- Information with phonon + charge, phonon + light, or with layered detector structure can help with particle identifications
- Stay tuned for more results -- the discovery might be around the corner