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Cryogenic Crystal Detectors are used in

e Particle Physics
o Dark Matter Detectors
o Neutrino Physics

m Coherent Elastic Neutrino Nucleus Scattering (CEVNS)
and neutrinoless double-beta decay (Ov[33)
e Astrophysics
o mm to gamma-ray energies
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Disclaimer

e This is my personal biased view focusing on detectors working at <1 K
e Lots of efforts ongoing with solid-state detectors for dark matter search
efforts, a good fraction of them utilizing “cold” to battle against “noise”.
o CCD-based detectors
o High Purity Germanium detectors
@)
e Also lots of fantastic cryogenic detectors | will likely fail to include here
e Apologies for efforts that | missed in this discussion



Dark Matter Detection Channels

s Axions _____"UL°

feV peV neV pnevV meV eV keV MeV
Dark Matter Mass

10-% 10 10> 102 1022 10-16 1010 1072
Max Recoil Energy in Silicon [eV]

1025 102 102° 107 104 _ 101' _ 10° 10°
Dark Matter Particle Density per Liter




Dark Matter Detection Channels
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Dark Matter Detection Channels
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Dark Matter Detection Channels

Hidden Sector-Particles
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Dark matter direct detection

e Dark matter particle interaction
deposits energy
e Detectors measure energy in forms of
o lonization — Charge
o Scintillation — Light
o Heat —» Phonons
e Stealth signal calls for sensitive
detectors




Why Use Cryogenic Crystal Detectors?

Cryogenic detectors can provide

a unique combination of energy
sensitivity, low threshold and
efficiency

Exploiting the fundamental idea of
lower temperature

— Lower amount of random motions
— Lower noise

— Better energy sensitivity & low
threshold

PN
I o

AN

e Nal

N CdTe

JU\A..A...J

HPGe 1™

ll.l ”

——

oo\ O
i

TES
U.l_] ST 1L

85%

239Pu

M

e e
9 98 100

L L
102 104

Well matched to DM detection requirements
CEVNS and 0v[33 experiments share the same needs, thus cryogenic
detectors are often developed by these fields jointly
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Energy — Signal

ck out Tomer
olansky’s talk late
today 10




Energy — Signal




Cryogenic Phonon Detectors

Thermometer

O
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% proportional to the energy
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Everybody has their choice of the favourite thermometer!




Thermometer #1 Transition Edge Sensor (TES)

Transition Edge Sensor : /
/
’ /

Resistance [mOhm]

e Metal films, tuned to have suitable
superconducting transition temperatures . J
e Operating in the middle of its transition e 0mE R0 R 00
e Heat warms up the sensor
— Increase in resistance
e Often read out by Superconducting
QUantum Interference Devices
(SQUIDs)
e High resistivity films can
also be readout with FETs
(schematics in next slide)
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Neutron Transmutation

Thermometer #2 ‘Doped (NTD) thermistors

Neutron Transmutation Doped (NTD) \ o
thermistors PN
TN
o . e
e Doped germanium/silicon chips wh el
e Resistance follows Efros-Shklovskii law: ; M
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Temperature [K]
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e Taking advantage of the steep slope at low
temperature

e Also comes with high dynamic range

e Readout with FETs, operating at room
temperature or in cold

Figures from V. Novati "4



Thermometer #3

Metallic magnetic calorimeter (MMC)

Metallic magnetic calorimeter (MMC)

photon
T magnetic field

e Paramagnetic sensor positioned absorber
in weak magnetic field paramagneic sensor megnetometer
e Heat changes its induced T

magnetic field
e Readout by SQUIDs as
magnetometer TASC.2009.2012724

thermal bath
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Thermometer #4

Microwave Kinetic Inductance Detectors
(MKIDs) 4
e Resonators made of superconducting . L .
metal films =
e Resonance frequency and phase 1 i b
response depending on its temperature . . of

e Radio-Frequency (RF) Readout system
e Intrinsic capability for multiplexing

. / Au plated Cu holder box

/ Si substrate

Interdigitated Capacitor (Al)

Symmetric co-planar strip
design inductor (Al)
~
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Funneling Energy to the Phonon Sensors (QETs)

e Quasiparticle-trap-assisted electrothermal-feedback TES (QETSs)

e Targeting at high energy
athermal phonons before
they down-convert

e Ultilizing superconducting
“fins” to trap phonons and

funnel them to TES

e Fast (O(10 us)) detector
response (in cryogenic
detector sense)
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Cryogenic PhotonDetector
(CPD)

e 10 gram, silicon, QET-based

e One channel construction, easy to
operate

e 3.9 eV phonon resolution

e \Works great in both sensing photons
and DM direct detection

e Future development by TESSERACT
collaboration

o See D. Mckinsey’s presentation
on Wed.
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Internal amplification - the NTL effect

Phonon sensors measure amount of charge produced:
Phonon-based charge amplification!

Phonon Sensors

h% 7 Luke phonons
'
:—\ -, Prompt phonons
PN
JN
J 1\ Luke phonons
e s

Phonon Sensors

Phonon energy = Erecoil + ElLuke
= Erecoil + Nen € AV

E field
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SuperCDMS High Voltage eV sensitivity Detector

PRD 104, 032010 (2021)

(HVeV) RN Y
' 30007 1 laser high intensity
e 1 gram, silicon, QET-based, 2.7 eV resolution %2000_
e Can apply O(100 V) for NTL boost :
or operate at 0 V as pure phonon sensors P
o Particle identification by statistics oo ano T onoo
e Quantized electron-hole pair sensitivity for T Tt or 1 Lasor 250V -MF
both ER and NR I See B. Schmidt's talk } e
e Scaling it up to 1 kg ; l l S . *
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See R. Mahapatra’s talk
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tomorrow for more details



Figures from arXiv: 2202.05097
PRD 99, 082003 (2019)
PRL 125, 141301 (2020)

Edelweiss: RED20 and RED30

33 gram, germanium, NTD-based
18 eV phonon resolution

REDZ20 operated with no E-field

RED30 employs NTL gain to boost

signals |
o With a planar electrode design 200/ - i

o 8eVee at 160 eV, consistent -

with Fano fluctuations ' |

e See E. Guy’s presentation on Wed.
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Adding information
for particle identification

e Electron recoil (ER): lots of charges
and scintillation lights
o Source: photons, electrons
alphas, ER DM particles
e Nuclear recoil (NR): less charges
and scintillation lights
o Source: neutrons, WIMPs

e Heat only (newly realized category):

well... heat (phonon) only...
o Source: unknown
e Adding information sometimes
degrades phonon information
o Careful trade-off needed
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EDELWEISS: NTD/TES + charge

NTD [ B

e Fully Inter-Digitized (FID)

detector

o 800 g germanium
o 2 NTD + 4 charge channels
e NbSI209

o 200 g germanium _
o 2 TES channel + 2 charge planar electrodes E= S
i .

woy : ybieH

Width : 7cm

See E. Guy'’s presentation
on Wed. for more details

TES vs NTD tests origin of the HO events
o Charge channels help rejecting HO events

e FID38 & PL38
o Next-stage 38 gram germanium detectors, with NTD+charge

o Expect better phonon and charge resolutions with cryogenic HEMTs

-av
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CRESST: TES + Light + Active Veto

e CaWQ, scintillating crystals, with phonon + light readout @ = 40 mm, h = 40 mm, 300 g
e Mechanical structure instrumented with active sensors as well
e 300 gin CREST Il — 249 crystal in CRESST Il

o 4.6 eV resolution

ely

CaWQ, sticks
= (with holding clamps)

-« reflective and
scintillating housing

Light Yield

-—— light detector (with TES)

—— block-shaped target crystal

== = (withTES) s 20750 ' 00 150 25
Energy (keV)

J. Phys.: Conf. Ser. 1342 012076



6 inch wafers

NUCLEUS: TES + Active Veto

e 1 gram crystal, read out with TES
o 3.7 eV resolution
e Outer detector provides active veto

Target (Al,0,, CaWo,, Si, Ge, ...)

Inner veto (Si)

Outer veto (Ge, LiIWO,)

)

Fig. from R. Strauss, m7s 2019

PRD 96, 022009 (2017) BASKET@CEA % 26



NIM A 2022.166707

Transmission neck:
@®=1cm, h=0.2 mm
HV Region:

MINER: Hybrid Phonon detector Ml i

Field shaper 0 Volt

e Separate crystal into a low-voltage (LV) and

a high-voltage (HV) region T

Phonon sensors on both sides

Use the LV region as the fiducial volume

Shape E-field to guide charges through the “neck”

NTL phonons from the charges dominates in the

HV side, whereas recoil phonons

dominate the LV side

e E  ~ charge measurement 4
E,, ~ recoil phonon measurement &

See R. Mahapatra’s talk
tomorrow for more details




Modular design: detaching thermometer from absorber

See M. Kellermann’s talk

Au-wi It w fi detail 1
Aipad “V{e o pad | dee e Decoupling thermometer from crystals
for ease of fabrication
e Thermal conduction facilitated by a gold
Wafer .
TES wirebond
Thermal link ] ]
to heat bath e (Can be coupled to a wide variety of
target materials
R e RemoTES from COSINUS achieved
<100 eV resolution with a 2-gram target
‘“”f“”“"h”‘ e Similar designs include
MMC for phonon
w0 MMC based AMORE detector for

®
é 3;; ii' “’g‘”f% OvBR
o o TES-based Ricochet Qarray for

- CEVNS 28

Absorber arXiv:2111.00349

Photon
detector

Crystal

Phonon
detector |




Multiplexing with RF resonators

arXiv:2111.08064

/ Au plated Cu holder box

- / Si substrate
Interdigitated Capacitor (Al)

Symmetric co-planar strip
design inductor (Al)
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arXiv:2111.02587

Significant improvement has been made

on mKIDs recently

6 eV resolution for energy deposited in

resonator demonstrated

o Translates to a few tens of eV of

resolution for energy deposited in
the crystal

Also with intrinsic capability of

multiplexing

— Promising candidates for next

generation rare-event experiments

29



Cryogenic detector in Astrophysics and Indirect searches

Side View

Top View

MushroomAbsorber e —

Fig. from E. Figueroa, COFI PIRE 20017

Cryogenic microcalorimeters also
contributes in DM studies in
astrophysics and indirect searches
Arrays of eV-resolution sensors
make perfect X-ray detectors

o Like an ultra-sensitive camera
Widely used in earth-based X-ray
telescopes as well as rocket and
satellite-based detectors
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Conclusions

Cryogenic detectors play an important role in dark matter search
o Both in direct search and in indirect and astro approaches
Resistance-based phonon detectors (TES and NTD) are approaching an
eV-resolution regime
o Also exploiting techniques including quasi-particle traps and internal
amplifications via NTL effect
Alternative sensing mechanisms (MMC and mKIDs) are advancing as well
o Promising candidates for next-generation DM search detectors
Information with phonon + charge, phonon + light, or with layered detector
structure can help with particle identifications
Stay tuned for more results -- the discovery might be around the corner
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