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(Dark matter exists)
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A Map of The Charted and 
Uncharted Territories of Dark 
Matter ands its Theories

A. C. Vincent
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Cold dark matter 

The WIMP 

Exploring other Shores
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Problems with CDM? (  2015)≲
Missing dwarfs: MW galaxy has only a fraction of total satellite galaxies compared 
with DM-only simulations


Too big to fail: MW galaxy contains only ~ 1/3 of the largest satellite halos vs DM-
only simulations


Core/Cusp Controversy: DM-only simulations predict a universally cuspy profile; 
dwarf galaxies appear to be cored


Diversity problem, alignment problem, ….

Still used as a very strong motivation for alternatives to CDM 
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Baryonic feedback leads to a reduction in 
mass of smaller galaxies and, combined with 
reionization, of baryonic content in larger 
ones (“baryon bailout”)

APOSTLE Simulations: DM + Baryons — Sawala et al. 1511.01098

McQuinn et al. 2203.10105

Baryonic Tully-Fisher relation  
in simulations and data 

consistent with cored dwarfs

Systems as anisotropic 
as the MW are predicted 
(but not typical)
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Alyson Brooks
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Lazar et al. 2004.10817

Seeing cored ultra-faint dwarfs (not detected yet) could be the hint we are looking 
for: and a way to test SIDM, WDM, ultralight DM, …

We should be looking at simulated vs observed structure to understand 
DM and its properties. 
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Cold dark matter 

The WIMP 

Exploring other Shores
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(What is a WIMP?)
• Weakly Interacting Massive Particle, whose abundance is set by thermal freeze-out in the 

Early Universe 

Mχ ∼ 1 − 1000 GeV

⟨σv⟩ ≃ 10−26 cm3s−1

 ?

DM

DM

SM

SM
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Hints from the galactic centre?
Fermi Collaboration, arXiv:1611.03184/Slide: Dan Hooper

⟨σv⟩ ≃ 10−26 cm3s−1

Fermi-LAT/ Hooper & Goodenough + many others
Consistent in energy & morphology with an 
annihilating WIMP. 13



(the usual caveats apply)

Tell me the truth doctor,  
is it dark matter?

No, it’s probably just  
pulsars

(Lee et al. 1506.05124)14

https://arxiv.org/abs/1506.05124


Galactic centre excess: Leane & Slatyer 2019

Injected dark matter signal not seen with this analysis method
15
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Joe Bramante 

Neutralino (arguably the OG WIMP)

Not close to dead

WINO & Higgsino DM 

should not have been found yet
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EFT Dark matter search

Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.02056

Let’s take on a Dirac dark matter candidate coupled to the SM, 
and not make too many assumptions 
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Possible interactions with quark sector up to 
dimension 7

Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.0205619

https://arxiv.org/abs/2106.02056


Dark Matter EFT search

• We vary the scale of new physics  as an 
independent parameter


• Relic density calculation requires 


• If ( > scale probed by other experiments), 
we compute  otherwise, we 
set 


• For LHC, we smoothly cut off the spectrum 
to suppress events with MET > 


Λ

Λ > 2mχ

Λ
ln ℒexperiment

ln ℒexperiment = 0

Λ

Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.0205620

https://arxiv.org/abs/2106.02056


Observables
• Direct detection 

• DirectDM: Fully automated RG evolution from  to low energies and matching to non-relativistic 
effective operators at hadronic scale


• DDCalc :Large database of direct detection constraints including astrophysical and nuclear 
uncertainties


• LHC constraints (ColliderBit)

• Monoject analyses: ATLAS 139 fb  based on full Run 2 datasets + CMS 36 fb 

• Fast profiling of LHC nuisance parameters


• Indirect detection 
• DarkSUSY: Relic density calculation

• GUM: Fully automated calculation of cross sections and gamma-ray spectra

• CosmoBit: CMB constraints on energy injection from annihilation

• Capt’n General Solar Capture + neutrinos with arbitrary DM-nucleon interaction


• Interface with DIVER differential sampler fully automated in GAMBIT

Λ

−1 −1

Slide: P. Scott Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.0205621

https://arxiv.org/abs/2106.02056


DMEFT Results - General picture

Slide: P. Scott, F. Kahlhoefer

 (G
eV

) 
Λ

Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.0205622
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DMEFT: Allowed DM parameters
CTA will cover a chunk of this 

Low-mass (  TeV) DM allowed if: 


•Underabundant or CP-violating 
 
e.g.  spin-
dependent and velocity suppressed 

•Low  s.t. LHC constraints invalid (but 
mediator would probably show up…)

mχ ≲ 100

𝒬(6)
3,q = ( χ̄γμχ)(q̄γμγ5q)

Λ

Slide: P. Scott, F. KahlhoeferEur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.02056 23
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Enforcing 100% of the dark matter

• DM must be heavy


• High chance of being seen at 
e.g. LZ (mainly due to loop-
induced operator mixing, 
which could be suppressed 
by other interactions)

Slide: P. Scott, F. Kahlhoefer Eur. Phys. J. C 81, 992 https://arxiv.org/abs/2106.0205624

https://arxiv.org/abs/2106.02056


 Many remaining WIMP identities
(Dan Hooper, PHENO 2022)

1) Co-annihilations between the dark matter and another state


2) Annihilations to W, Z and/or Higgs bosons; scattering with nuclei only through 
highly suppressed loop diagrams


3) Interaction which suppress elastic scattering with nuclei by powers of velocity 
or momentum 

4) Dark matter that is lighter than a few GeV (relaxing direct constraints)


5) Departures from radiation domination in the early universe (early matter 
domination; late-time reheating, etc.) which result in the depletion of the dark 
matter’s relic abundance


6) The dark matter annihilates to unstable non-Standard Model states (ie. hidden 
sector models)
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Cold dark matter 

The WIMP 

Exploring other Shores
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A Map of The Charted and 
Uncharted Territories of Dark 
Matter ands its Theories

A. C. Vincent
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Many guiding principles, e.g. Tremaine Gunn (limit on 
number of Fermions in the galactic centre due to 
Pauli exclusion -> limit on DM mass  few eV) can 
be circumvented by being clever enough

≳

Isle of many fermions
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How are these produced?
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New & rediscovered mechanisms and 
predictions for primordial black hole dark matter
In theories of large extra dimensions (e.g. Arkani-Hamed 
et al), collisions in the hot dense plasma of the Early 
Universe can make black holes which grow to 
macroscopic size by accreting plasma (see Conley & 
Wizansky 2006). 

t

s

Friedlander, Mack, Schon, Song,  ACV 2201.11761/JCAP
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Extra-dimensional primordial black holes
• These exhibit a different lifetime, Hawking temperature and spectrum 

from their 4d counterparts
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Friedlander, Mack, Schon, Song,  ACV 2201.11761/JCAP

Viable dark matter candidate 
M ≃ 1021 g

(also solutions where the black holes do not survive,

but give e.g. early matter domination)

ΩBH = ΩDM

31
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Producing sequestered sectors from black hole evaporation?

At colliders: Song & ACV https://arxiv.org/abs/1907.08628 

Early Matter domination -> decay (Friedlander…ACV 2022)

e.g. Cheek et al. 2107.00016, 2104.03297

32
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Slide: Tim Tait PPC 2021

Whatever happens, detecting dark matter and measuring its properties 
tells us far more than we now know about the early Universe 
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Conclusions
• CDM still works quite well, but alternatives are worth pursuing


• The WIMP have survived challenges, even if the WIMP parameter space is 
shrinking


• Each new challenge brings new ideas, as the parameter space for other 
models keeps growing 


• Simulation and theory guide us, but ultimately experiment will tell us what DM 
is — and by extension will unlock much more particle physics, and knowledge 
of the Early Universe
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Extras
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Isolated galaxies Satellite galaxies
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Zentner et al. 2202.00012Diversity of inner slopes

CDM + Baryons

Hayashi et al. 2102.05300Halo Mass function of ULDM, Schutz 2001.05503
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Galactic centre excess: Leane & Slatyer 2019

Dark matter not seen with this analysis method40
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