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f ≪ 10 kHz

There are no known astrophysical objects that are small and 

dense enough to produce gravitational waves beyond 10 kHz

High-frequency gravitational waves



High-frequency gravitational waves

A growing community is seriously 

considering the search of high 

frequency gravitational waves 
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Ideas and techniques developed for axions can 

be adapted to gravitational waves Raffelt, Stodolski’89
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Cosmic magnetic fields



Evidence from TeV Blazars

 Kronberg , 2016 

Cambridge University Press

Fermi 
Bound HESS

cascade

CTA consortium 2017 Dermer et al



Domcke, CGC 2021

Cosmic magnetic fields
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Domcke, CGC 2021

ARCADE 2

Largely unexplored with upcoming advances in radio 

astronomy probing it in the near future.

Puzzling signal by EDGES.   (Experiment to Detect the Global 

Epoch of Reionization Signature)

Rayleigh-Jeans tail



Upper bounds on stochastic gravitational waves



Gravitational-Wave versus 
Axion electrodynamics



Axion 

electrodynamics

Gravitational wave 

electrodynamics

An example Axion-Photon conversion Gertsenshtein effect

Effective current

( in  the TT gauge)

Benchmark

QCD axion

jμ

eff
= (−∇ ⋅ P, ∇ × M + ∂tP)

Pi = − hijEj Mi = − hijBj

McAllister et al, 1803.07755 

Tobar et al, 1809.01654  

Ouellet et al, 1809.10709 
Domcke, CGC, Rodd

Pi = gaγγaBi Mi = gaγγaEi

gaγγa ∼
α ρDM

2πma fa
∼

α ρDM

2πmπ fπ
∼ 10−22

h ∼ 10−22
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∂νF
μν = jμ

eff
= ∂ν (gaγγaF̃νμ) = (0, gaγγ ∂ta

⃗B0 )

Axion electrodynamics

In the presence of an external electromagnetic field, 

axions act as a source term to Maxwell's equations, 

effectively inducing an electromagnetic current.
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Axion electrodynamics

jeff

In the presence of an external electromagnetic field, 

axions act as a source term to Maxwell's equations, 

effectively inducing an electromagnetic current.

SHAFT

haloscopes based on lumped-element detectors

Magnetic 

 flux

∇ × B = ∂tE + gaγγ ∂ta B
0

jeff



Effective currents
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Axions

∇ ⋅ E = − ∇ ⋅ P

∇ ⋅ B = 0

∇ × E = − ∂tB

∇ × B = ∂tE + ∇ × M + ∂tP

P = gaγγaB, M = gaγγaE

McAllister et al, 1803.07755 

Tobar et al, 1809.01654  

Ouellet et al, 1809.10709 
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Axions Gravitational waves

gμν = ημν + hμν hμν ≪ 1

∇ ⋅ E = − ∇ ⋅ P

∇ ⋅ B = 0

∇ × E = − ∂tB

∇ × B = ∂tE + ∇ × M + ∂tP

P = gaγγaB, M = gaγγaE Pi = − hijEj Mi = − hijBj

( in  the TT gauge)McAllister et al, 1803.07755 

Tobar et al, 1809.01654  

Ouellet et al, 1809.10709 Domcke, CGC, Rodd,  2202.00695
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∫
Vcav 

d3
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∫
Vcav

d3x En
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E(x, t) = ∑
n

en(t)En(x)Eigenmodes

It resonates when the GW 

frequency matches one of 

the eigenmode frequencies
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ωn

Qn

∂t + ω2
n) en(t) = −

∫
Vcav 

d3
xE*n ⋅ ∂t jeff 

∫
Vcav

d3x En

2

E(x, t) = ∑
n

en(t)En(x)Eigenmodes

• In the TT frame, the description of rigid bodies becomes unintuitive, as their 

coordinates are deformed by a passing GW due to the motion of the 

coordinate system.  This is crucial to implement boundary conditions. 
• In the proper detector frame the coordinate system is defined by rigid rulers 

and closely matches the intuitive description of an Earth-based laboratory, 

with the GW acting as a Newtonian force.  
• Confusion in the literature due to this ( see e.g. 2012.12189)

Subtleties due to gauge fixing (TT vs detector frame gauge)
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Pi = − hijEj +
1

2
hEi + h00Ei − ϵijkh0jBk

Mi = − hijBj −
1

2
hBi + hjjBi + ϵijkh0jEk



Magnetic 

 flux

Domcke, CGC, Rodd,  2202.00695

Gravitational wave electrodynamics
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Gravitational wave electrodynamics

0.25
0.50

0.75
1.00

0

π/4

π/2

3π
/4

π

5
π/4

3π/2

7π
/4

k
→

−0.12 −0.08 −0.04 0.00 0.04 0.08 0.12

Bz/[Bmaxh
×(ωR)2]

Φ =
ie−iωt

16 2
h×ω3Bmaxπr2Ra(a + 2R)s2

θh

Room for improvement



Domcke, CGC, Rodd,  2202.00695

Gravitational wave electrodynamics

Φ8 =
e−iωt

3 2
ω2Bmaxr

3R ln(1 + a/R)sθh

× (h×sϕh
− h+cθh

cϕh) .
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Gravitational wave electrodynamics

Up-to-date estimate of PBH in binaries 

and their expected merger rate accounting 

for the local overdensity in the Milky Way

See also 2205.02153  by Franciolini, A. Maharana, and F. Muia, 
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,

Conclusions

The Gertsenshtein effect during the dark ages 

provides a powerful way to probe gravitational waves 

in the MHz-GHz range from distortions of the 

Rayleigh-Jeans CMB tail. 

I provide a formulation of GW electrodynamics which 

demonstrates that low-mass axion haloscopes are 

also UHF-GW telescopes. 

A number of distinct experimental proposals have 

coalesced on a strain sensitivity of  for MHz 

GWs, a level that is still orders of magnitude away 

from any signal of the early Universe. Whether we can 

hope to probe such strain sensitivities remains to be 

determined.

10−22



⟨Bi(x)Bj(x′ )⟩ =
1

(2π)3a(t)4 ∫ d3keik⋅(x′ −x) ((δij − ̂ki
̂kj) PB(k) − iϵijk

̂kkPaB(k)) ,

The adiabatic evolution of the magnetic field due to 

cosmic expansion is determined by the scale factor.  

⟨B2⟩ =
1

π2a(t)4 ∫
∞

0

dkk2PB(k) = ∫
∞

−∞

d log λ B2
λ

λB = ∫
∞

0

dλ
B2

λ

⟨B2⟩

average magnetic field

the coherence length

Durrer, Neronov, 2013

B2
λ ≡

8π

λ3a(t)4
PB (

2π

λ ) ,where

Cosmic magnetic fields



Domcke, CGC 2021

Although cosmic magnetic fields are not expected to be 

perfectly homogeneous, coherent oscillations take place in 

highly homogeneous patches.

ℓosc = 4ω/(1 + z)2Xe(z)ω2

pl,0
≪ 1 pc

⟨Γg↔γ⟩ =
2πGB2ℓ2

osc

Δℓ

𝒫 ≡ ∫
l.o.s.

⟨Γg↔γ⟩dt = ∫
zini

0

⟨Γg↔γ⟩

(1 + z) H
dz

( □ + ω2

pl) Aλ = − B∂ℓhλ

□ hλ = 16πGB ∂ℓAλ

The plasma frequency acts as an effective mass term

ωpl = e2ne/me

ℓosc ≃ 4ω/ω2

pl

Oscillations after the formation of the CMB



Up-to-date estimate of PBH in binaries 

and their expected merger rate accounting 

for the local overdensity in the Milky Way

Merger rates

See also 2205.02153  by Franciolini, A. Maharana, and F. Muia, 


