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Black holes and neutron stars, breakthrough in observational data

GW signals from binaries at their ringdown phase : GW170817 neutron star merger,
GW190814 and the large mass secondary at 2.59+0.08

−0.09 M�
Array of radio telescopes, EHT : image of M87 black hole with its light ring
GRAVITY VLT: observation of star trajectories orbiting SgrA central black hole : orbit
characteristics give us tests of strong gravity which get better as precision increases.
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Black holes and neutron stars, breakthrough in observational data

GW signals from binaries at their ringdown phase : GW170817 neutron star merger,
GW190814 and the large mass secondary at 2.59+0.08

−0.09 M�
Array of radio telescopes, EHT : image of M87 black hole with its light ring
GRAVITY VLT: observation of star trajectories orbiting SgrA central black hole : orbit
characteristics give us tests of strong gravity which get better as precision increases.
What is the maximal mass of neutron stars? What is their equation of state? How rapid can
their rotation be before instability?
eg.: Is the compact secondary the heaviest neutron star or the lightest astrophysical black
hole? How does this fit with GR?
Can we find pulsars in the vicinity of SgrA and follow them around the central black hole?
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Black holes and neutron stars, breakthrough in observational data

GW signals from binaries at their ringdown phase : GW170817 neutron star merger,
GW190814 and the large mass secondary at 2.59+0.08

−0.09 M�
Array of radio telescopes, EHT : image of M87 black hole with its light ring
GRAVITY VLT: observation of star trajectories orbiting SgrA central black hole : orbit
characteristics give us tests of strong gravity which get better as precision increases.
Can we find alternatives to GR black holes and stars as precise rulers of departure from GR?
What about other compact objects like wormholes or regular black holes
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Plan and tools of construction

GR black holes and their characteristics
Scalar tensor theories as a measurable departure from GR
Use GR solutions to construct stealth solutions
kinetic term X = − 1

2∂µφ∂νφgµν and geodesics
disformal transformations [Zumalacarregui, Garcia Bellido]
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GR black holes

In GR black holes are "unique" and characterised by a finite number of charges, essentially, J,M

They are relatively simple solutions-they have no hair, quadrapole is Q2 = −J2/M

During collapse, black holes lose their hair and relax to some stationary state of large
symmetry. They are (mostly) vacuum solutions of Einstein’s eqs, Gµν = 0
Static and spherically symmetric Schwarzschild solution :

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

with f (r) = 1− 2M
r , M mass black hole parameter

The zero(s) of f (r) are the horizon(s) of the black hole (rh = 2M).
An event horizon determines an absolute surface of no return. Its interior is the trapped
region of the black hole hiding the curvature singularity at r = 0
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The rotating Kerr black hole

Parameters mass M, angular momentum J = aM create ergoregion and other goodies
For Kerr, geodesics are integrable : In 4 dimensions we find 4 constants of motion describing
test particles : Lz , E ,m,Q.
Geodesic equation is given as a first order diff eq using S = −Et + Lzϕ + S(r , θ) [Carter],

∂S
∂λ

= gµν
∂S
∂xµ

∂S
∂xν

= −m2

Integrability for Kerr means that S is a completely known function parametrised by
Lz , E ,m,Q. Note that S shares the same definition as X = − 1

2∂µφ∂νφgµν

Lets move on now to ST theories very briefly
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Scalar tensor theories : a robust measurable departure from GR

Simplest modified gravity theory with a single scalar degree of freedom

BD theory,..., Horndeski,..., beyond Horndeski,..., DHOST theories [Noui, Langlois, Crisostomi, Koyama

et al]

BD have only GR black hole solutions (no hair theorems)
For hairy black holes we need to have higher derivative theories... Horndeski, Beyond and
DHOST
Nothing fundamental about ST theories, they are just sane and measurable departures from
GR.
They are limits of more complex fundamental theories (massive gravity, braneworld models,
EFT from string theory, Lovelock theory etc.)
Horndeski is parametrized by 4 functions of scalar and its kinetic energy, Gi = Gi (φ,X).
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Scalar tensor theories : a robust measurable departure from GR

Simplest modified gravity theory with a single scalar degree of freedom

BD theory,..., Horndeski,..., beyond Horndeski,..., DHOST theories [Noui, Langlois, Crisostomi, Koyama

et al]

BD have only GR black hole solutions (no hair theorems)
For hairy black holes we need to have higher derivative theories... Horndeski, Beyond and
DHOST
Nothing fundamental about ST theories, they are just sane and measurable departures from
GR.
They are limits of more complex fundamental theories (massive gravity, braneworld models,
EFT from string theory, Lovelock theory etc.)
Horndeski is parametrized by 4 functions of scalar and its kinetic energy, Gi = Gi (φ,X).

Fix a theory and try to find a solution
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Horndeski and beyond

Horndeski theory-Galileons

Typically we choose functions and study the system of eqs.
Example in Horndeski with G2,G4 linear functions of X ; G3 = G5 = 0

S =

∫
d4x
√
−g
[

R − 2Λb + X + βGµν∂µφ∂νφ
]
,

Kinetic term is X = − 1
2 gµν∂µφ∂νφ.

Conformal and Disformal transformations transport us in between theories
General conformal and disformal map :

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ
for given (regular) functions C and D.

[Langlois, 2018]
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Stealth solution of spherical symmetry

Example Horndeski theory [Babichev, CC]

S =

∫
d4x
√
−g
[

R − 2Λb − ηX + βGµν∂µφ∂νφ
]
,

simple (stealth) solution reads

f = h = 1−
2µ
r

+
η

3β
r2

,

φ = qt ±

∫
dr

q
h

√
1− h

with q2 = ζη+Λbβ
βη .

Metric is a GR solution but scalar field is non trivial!

Note that, X = gµνφµφν = − q2
h + q2 f (1−h)

h2
= −q2 is constant.

Coordinate transformation shows that the disformed metric is a stealth black hole.
D(stealth)≡ stealth
Can we construct rotating solutions?
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Going beyond spherical symmetry

We can find numerous solutions of spherical symmetry

Stealth solutions with X constant are generic in DHOST theories

Can we construct stealth rotating solutions?
Can we obtain a Kerr metric with X = −q2 for some ST theory? We have a candidate
metric, Kerr, but what can the scalar field be?
The key is understanding what X = −q2 signifies geometrically.
Kerr : Geodesics are constructed via S which is known [Carter],

∂S
∂λ

= gµν
∂S
∂xµ

∂S
∂xν

= −m2

Basically assume that the Kerr potential is the scalar field!
Result : for a certain class of DHOST theories, (de Sitter) Kerr with X = −q2 with a regular
scalar field is an exact solution
Stealth Kerr black hole in DHOST theory [Crisostomi, CC, Gregory, Stergioulas]

What is D(Kerr)?
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Constructing non Kerr rotating solutions [Anson, Babichev, CC, Hassaine]

Using disformal transformation we can construct analytically causal black holes other than
Kerr.
Disformed Kerr metrics,

gKerr
µν −→ g̃µν = gKerr

µν + D(X)∇µφ∇νφ
for given D.

ds2 = −
(
1−

2M̃r
ρ2

)
dt2 −

4
√
1 + DM̃arsin2θ

ρ2
dtdϕ +

sin2θ
ρ2

[(
r2 + a2

)2
− a2∆sin2θ

]
dϕ2

+
ρ2∆− 2M̃(1 + D)rD(a2 + r2)

∆2 dr2 − 2D

√
2M̃r(a2 + r2)

∆
dtdr + ρ

2dθ2 .

For D 6= 0 and a 6= 0 D(Kerr) in not an Einstein metric!
Metric is causal, has an ergoregion, an event horizon
For D 6= 0 we do not verify the GR no hair relation
Disformed Kerr is a one parameter family of well defined measurable departures from Kerr
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The 4d − EGB scalar tensor theory from higher dimensions

Start with a higher dimensional metric theory in D dimensions, S =
∫

dDx(R(D) + αG(D))

Compactify on a D − 4 manifold S =
∫

dDx(R(D) + αG(D)) −→ 4 dim Horndeski theory

If manifold is product of spheres we obtain black hole solutions [CC, Gouteraux, Kiritsis]

Special singular limit α̃ = α
D−4 while D −→ 4 [Glavan, Lin]

Non trivial scalar tensor theory [Lu-Pang, Hennigar etal, Clifton, Fernandes etal]

Particular Horndeski theory with all G’s switched on (unique coupling constant α)

S =
1
2κ

∫
d4x
√
−g
{

R + α
[
φG + 4Gµν∇µφ∇νφ− 4(∇φ)2�φ + 2(∇φ)4

]}
+ Sm,

Admits the following solution...
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Black hole of spherical symmetry [Lu-Pang, Fernandes et al]

For static and spherical symmetry, ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

with f (r) = 1 +
r2

2α

(
1−
√

1 +
8αM

r3

)
, φ(r) =

∫
dr
√

f − 1
r
√

f

Far away solution is very much like GR, f (r) =
r→+∞

1− 2M
r + 4αM2

r4
+O(r−5),
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Far away solution is very much like GR, f (r) =
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Differences : The solution is more regular than GR at r → 0 but still not regular,
f ∼ 1−

√
Mr
2α

Solution has event horizon rh = M +
√

M2 − α if α > 0 and M > Mmin =
√
α.

Higher order terms are smoothing out the geometry and allowing more compact objects!
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Black hole of spherical symmetry [Lu-Pang, Fernandes et al]

For static and spherical symmetry, ds2 = −f (r)dt2 +
dr2

f (r)
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r2
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(
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Far away solution is very much like GR, f (r) =
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r4
+O(r−5),

Constrants :α < 0 excluded from probed atomic nuclei which are horizonless... For
R ∼ 10−15 need −α < 10−30

If α > 0 since Mmin =
√
α then observed black holes from GW give us constraints on α

For example if secondary of GW190814 is a black hole then α < 59km2 etc.
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Neutron stars [CC, Lehebel, Smyrniotis, Stergioulas]

Introducing, Tµν = (ε + P)uµuν + Pgµν we find neutron star solutions

For α > 0 we have more compact neutron stars. GW19 is compatible with slowly rotating
neutron star.

Universal point of convergence for neutron stars and black holes for known EOS. No mass
gap present in this theory unlike GR!
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From a black hole to a wormhole : general characteristics [Morris&Thorne,

Damour&Solodukhin]

Start again with a static and spherically symmetric spacetime.

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2

In practical terms a wormhole has a throat (rather than an event horizon) where f (r0) = 0
and f 6= h so h(r0) 6= 0.
Wormhole : matter and light can tranverse in principle the throat both ways. If the throat
were an event horizon then it d be a one way wormhole...
The smaller h(r0) the bigger the redshift, the more black hole like is our wormhole

In GR wormholes are exotic objects. What about ST theories?
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From a black hole to a wormhole [Bakopoulos, CC, Kanti]

Start with the black hole :

h̄(r) = f̄ (r) = 1 +
r2

2α

(
1−
√

1 +
8αM

r3

)
, φ̄(r) =

∫
dr

√
h̄ − 1

r
√

h̄

to construct the wormhole we undertake a disformal transformation,
gµν = ḡµν − D(X̄) ∇µφ̄∇ν φ̄ ,

Disformal changes only the grr term : h = h̄ , f = h̄
1+2D(X̄)X̄ ≡ h W (X̄)−1 , φ = φ̄ ,

Rough idea is to introduce a zero of f (but not h) ie., f (r0) = 0 with r0 > rh

In other words we need W (X̄)−1 = 0|r=r0 with r0 > rh.

If we can glue together two patches of [r0,∞] in a C2, then we have a traversable wormhole
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Wormhole solution [Bakopoulos, CC, Kanti]

Choosing a generic shape function we can construct wormholes of variable mass and redshift
For M = 0 we have flat spacetime, so throat is mass dependent
Spacetime regular at r = r0. Consider, r2 = l2 + r20

ds2 = −H(l) dt2 + dl2
F (l) + (l2 + r20 ) dΩ2, with H(l) = h(r(l)), and F (l) =

f (r(l)) (l2+r20 )

l2

H(l) = h0 + h2 l2 + O(l4) , F (l) = f0 + f2 l2 + O(l4)
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The wormhole is therefore everywhere regular and needs no local or non local sources of
matter. It is a vacuum solution just like black holes are in GR
The throat is always a light ring or critical point! Light will accumulate at the throat of the
wormhole
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Conclusions

There is an ongrowing multitude of hairy ST black holes and compact objects that we can
construct
We have stealth GR like solutions but also analytic rotating solutions which are non GR
Starting from higher dimensional theories we can construct static black holes which are
departing from GR
We can construct neutron stars and wormholes with interesting and non trivial
phenomenology
nothing in general for stationary solutions apart from slow rotation
are the solutions relevant? stable? resulting from gravitational collapse?
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