An Independent Measurement of H₀ from Lensed Quasars

Kenneth Wong

National Astronomical Observatory of Japan

on behalf of the TDCOSMO collaboration

Rencontres de Blois Exploring the Dark Universe May 24, 2022

The Hubble Tension

- Flat ΛCDM cosmology is an excellent fit to a variety of observations, including CMB
- Recent tension in early-time and late-time measurements of Hubble constant (H₀)
 - H₀ sets the present-day expansion rate of the Universe
 - Planck CMB finds $H_0 = 67.4 \pm 0.5$ km/s/Mpc (assuming flat Λ CDM)
 - SH0ES distance ladder finds H₀ = 73.0 ± 1.0 km/s/Mpc (Riess+2021)
 - a challenge for flat ΛCDM cosmology
- Independent measurements of H₀ are key to test for systematics

figure adapted from Verde, Treu, & Riess (2019)

Strong Gravitational Lensing & Time-Delay Cosmography

- Background object (source) magnified by foreground object (lens)
- Multiple images → create lens model
- "Time-delay cosmography" lensed quasars can be used to constrain H₀, independent of other methods
- Need:
 - measured time delay between multiple images
 - accurate lens mass model from high-resolution imaging + kinematics
 - estimate of mass along line of sight

Animation credit: M. Mori

TDCOSMO/HOLICOW

- TDCOSMO (formerly H0LiCOW; Suyu+2017) project has performed detailed analysis of several time-delay lenses
 - long term monitoring from COSMOGRAIL (Courbin+2005), VLA (Fassnacht+2002) for accurate time delays
 - high-resolution imaging for detailed lens modeling
 - wide-field imaging/spectroscopy to characterize mass along LOS
 - spectroscopy to measure lens velocity dispersion
- Seven lenses analyzed to date (see Wong+2020, Shajib+2020, Birrer+2020 for latest results)

Time Delay Measurement

- Long-term monitoring of time-delay lenses using small (1-m and 2-m) telescopes (COSMOGRAIL collaboration; Courbin+2011; Bonvin+2017)
- Well-tested algorithms for time-delay measurements (Tewes+2013)
- Recent development: high-cadence monitoring to get time delays in ~1 year (Courbin+2018, Millon+2020b)

Lens Modeling

- Accurate lens model using deep HST and AO imaging
 - accurate PSF using reconstruction technique to subtract quasar light
 - high resolution needed to model quasar host galaxy
- Velocity dispersion of lens galaxy needed to reduce model degeneracies
- Multiple lens modeling approaches/ softwares (Shajib, Wong, et al. 2022, arXiv:2202.11101)

Shajib, Wong, et al. 2022

Mass Along the Line of Sight

Animation credit: M. Mori

- Lenses lie in overdense LOS due to local lens environment (e.g., Fassnacht+2011; Wong+2018)
- Some strong perturbers need to be included explicitly in lens model (e.g., Wilson+2016; McCully+2017; Sluse+2017)
- Estimate effect of weaker perturbers using weighted galaxy number counts calibrated by simulations (e.g., Greene+2013; Rusu+2017,2020)

Blind Analysis

- H₀ and related quantities blinded throughout analysis
 - avoid confirmation bias
 - discover unknown systematics
- Blindness can be implemented by subtracting median of posterior PDF during analysis
- Unblind only after analysis completed, agreement by all coauthors
- Unblinded results published without any further modification

TDCOSMO Results

- Combined result: ~2% precision on H₀ for flat ∧CDM from seven lensed quasars
 - consistent with SH0ES SNe Ia + distance ladder (Riess+2021)
 - >4σ tension with *Planck*
 - assumes power-law or composite (stars+dark matter) lens mass profiles
- Updated joint Bayesian hierarchical analysis using kinematics-only constraint: ~5% constrain on H₀
 - maximally conservative, allows for freedom in mass profile
 - external constraints on mass parameters from SLACS lenses (assumes SLACS and TDCOSMO lenses are similar)
 - resolved kinematics from upcoming JWST/ NIRSpec IFU spectroscopy will break degeneracy

figures adapted from Wong+2020, Birrer+2020

Future of Time-Delay Cosmography

- Goal: 1% precision on H₀
- More data on time-delay lenses
 - spatially-resolved stellar kinematics (e.g., VLT/MUSE, Keck/KCWI, JWST/NIRSpec)
 - improving kinematics measurement and modeling
 - increasing sample size of time-delay lenses (discovery, monitoring, follow-up)
- Testing and controlling for systematic uncertainties
 - more detailed investigation of lens mass profiles
 - multiple modeling approaches (Shajib, Wong et al. 2022)
- Analysis of large future lens samples
 - LSST will eventually discover ~hundreds or ~thousands of lensed quasars for time-delay cosmography
 - develop lens search methods on large imaging surveys (e.g., DES, HSC)
 - develop automated modeling techniques (Schmidt+ in prep.; Ertl+ in prep.)

Shajib+2018

Yildirim+2021

Summary

- Time-delay cosmography measures H₀ completely independent of CMB and distance ladder/SNe
- Latest TDCOSMO results attain ~2% precision on H₀ in flat ΛCDM
 - assumes lenses are accurately described by power-law or stars+DM
 - consistent with SH0ES SNe Ia + distance ladder
 - in >4σ tension with Planck CMB value
- Hierarchical analysis using external datasets, relaxed assumptions on mass profile gives ~5% precision on H₀ in flat ΛCDM
 - assumes external lenses from SLACS are similar to TDCOSMO lenses
 - IFU data with upcoming JWST observations will break degeneracy
- Future developments will push toward a ~1% constraint
 - larger lens samples
 - further investigation of systematics
 - automated lens modeling

http://www.tdcosmo.org