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G2 Landscape: SuperCDMS Low-mass Search
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SuperCDMS SNOLAB focuses on low mass DM region
— Over 1000x better sensitivity compared to SuperCDMS soudan

— Driven by improvements in detector design, better background
control, more exposure, and lower thresholds ,
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Cryogenic Dark Matter Search: The Big Picture

Cryogenically cooled Ge/Si detectors with photo-lithographically patterned
Transition Edge Sensors for excellent energy and position resolution

Demonstrated two decades of leading
WIMP search limits with excellent
low-background performance

lonization

v/c = 103 (Galacuv,

Mc? = 50 - 500 GeV) ® Passive Shielding (Pb, poly, depth) ,
X-Y-Z Position from Phonon Pulse Timing e Active Shielding (muon veto shield)

- ' A



Anatomy of an event

60

3600

a0l
|

Q inner
Q outer

3200 -

n
1=

lonization Energy

n
=
=1
=]

2600 -

2600 -

Digitizer Bins

Phonon Energy (Recoil) |

2400

Hot charge carriers (3eV/pair) -

2000

- 3 V | | | | |
0 200 400 (<li) 800 1000 1200 1400 1600 1800
us

ov J Quasi-diffusive THz phonons __ Sensor A
= Sensor B
£ — Sensor C
éﬁﬂﬂﬂf
Total Phonons = Direct Phonons + Luke Phonons ) T

us



Phonon Sensors
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Phonons are collected by superconducting Al fins (A="meV), creating quasi particles that are
then trapped by the W Transition Edge Sensors (TES), held in equilibrium between Normal and
Super Conducting temp. SQUIDs measure small change in current through sharp AR/AT



Multi-step process
repeatable for high quality

Dedicated Fab @ TAMU . . _
1st SNOLAB Tower Fab A C T s
p J r detectors




Detector Technologies — iZIP and HV

iZIP Detector with ionization and phonon
sensors for ER/NR discrimination (>keV)
First SNOLAB Ge iZIP (fabricated at TAMU)
AN https://arxiv.org/pdf/1610.00006.pdf

R

High Voltage Detector with NTL gain. Give up |
discrimination in favor of low threshold (~100eV).
First SNOLAB Si HV (fabricated at TAMU)



https://arxiv.org/pdf/1610.00006.pdf
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Detector Technologies - iZIP

Simultaneous measurement of ionization and
phonon for ER/NR discrimination (>keV)
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Detector Technologies - High Voltage (HV)

lonization vs Phonon Energy

20— lonization efficiency small (~1/5) at low energies

To detect low WIMP nuclear recoil, challenge is to
measure the much lower ionization signal
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Use Luke-Neganov amplification: Drifting electron
across high voltage would produce lots of phonons
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Improved Detectors

5
0.6kg Ge

7.6cm x 2.5cm

* Bigger

e Larger voltage bias

* More position
information

* Lower Tc for better
phonon resolution

1.4kg Ge (0.6kg Si) | * Resolution approaching

33

B . iZIP (GO

10cm x 3.3cm level of single electon-
hole pair (for HV)
iZ1P HV
Ge Si Ge ©Si
Number of detectors 10 2 8 4

Total exposure (kg-yr) b6 4.8 44 9.6
Phonon resolution (eV) 50 25 10 5
Ionization resolution (eV) 100 110 - -
Voltage Bias (V) 6 8 100 100

Expected threshold as per SuperCDMS SNOLAB sensitivity
<200 eVnr in iZIP and <40 eVnr in HV detectors https://arxiv.org/pdf/1610.00006.pdf
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Refrigerator

sk SuperCDMS experiment design
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conduction to a dilution refrigerator

Shielding:
- Cu cans
- Inner neutron shield

Pb gamma shield
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E-tank is the vacuum
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detector readout
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SuperCDMS: A broadband DM search

. Traditional Nuclear Recoil iZIP, Background free >5 GeV

. Low Threshold Nuclear Recoil iZIP, limited discrimination >1 GeV

. HV mode HV, no discrimination 0.3-10 GeV

. Electron recoil HV, no discrimination 0.5 MeV - 10 GeV
. Absorption (Dark Photons, ALPs) HV, no discrimination 1 eV - 500 keV

Absorption Electron Recaoll

1 eV 1 keV 1 MeV 1 GeV 1 TeV
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SuperCDMS installation in progress

Component deliveries to SNOLAB by the
construction project
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Plan Status

Seismic Platform Installed

3T Gantry Crane Installed

Radon Reduction System | Installed

Cleanroom Installed

DAQ Installed

Computing Offsite, data transferred
to SLAC and others

Calibration Preparing to ship

Readout Electronics

Complete

Dilution Refrigerator

Received from vendor

Shielding

Received from vendor

Detector Towers

Scheduling The Work

Shielding

b= Dilution Refrigerator

, /‘m«.j,

SNOBOX

In Development

Plan is to start commissioning
run in 2023!
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SuperCDMS installation in progress

Inner lead and
Seismic platform polyethylene shield Hardware
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commissioning
run in 2023!
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WIMP-nucleon cross section [c

Proiected Sensitivity
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WIMP-nucleon cross section

Future SNOLAB Upgrades

Let’s reach the solar neutrino floor!
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Single-e sensitive HVeV Detector (gram -scale)

Single-e sensitivity has been demonstrated at gram-scale
(1cm?x4mm) Si detector. Run 1 at Stanford and Run 2 at
Northwestern provided world leading low-mass sensitivity
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Hybrid HV Detector

Main idea: Monolithic detector
with a LV and a HV side — LV to
measure primary phonons like iZIP
and HV to measure NTL phonons.
Do it without significant NTL

pollution from HV to LV. ~100gm

Discrimination improves at low energies due

to the Lindhard suppression of NR ionization.

Funded by DOE for DM and CEVNS searches

Phonon-mediated High-voltage Detector with Background
Rejection for Low-mass Dark Matter and Reactor Coherent
Neutrino Scattering Experiments:
https://inspirehep.net/literature/1802528

Transmission neck:
®=1cm, h=0.2 mm S5Fe
HV Region:
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https://inspirehep.net/literature/1802528

Detector R&D for G2+

Exiting new detector technology being developed by the collaboration for low-energy detection.
Reduced charge leakage, reduced Tc (o scales as Tc3) and improved design pushes the frontier
for both HV detectors as well as OV phonon detectors.
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Figure 7: Simple small volume R&D TES test
structures that have been fabricated by Texas
A&M and tested by U C Berkeley. The 40mK
100umx400umx40nm thick TES has achieved a mea-
sured sensor resolution of 40meV and the requisite
environmental noise isolation needed for requirement

Volume meV
mK [gm Xpm X nm] [meV

W 125 25%25%35 25 7
Ti [3] 50 6X0.4X56 47 128.2
100 47
MoCu[4] 110.6 100x100x200 295.4 6.6
TiAu[5] 106 10x10%90 48 16
TiAu[6] 90 50x50x81 ~23" 1.6
w 40 100x400%40 40
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record resolution athermal phonon detector
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Figure 2: Photo of prototype athermal phonon de-
tector on thick silicon wafer of similar characteristics
to our baseline, but larger area. This demonstrator
was fabricated at Texas A&M and achieved a 3.9 eV
wsolutlon (o) over its 45 cm? collection area.
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Summary

SuperCDMS SNOLAB G2 making progress

4-tower initial payload for 5 years (2023-2028)

— 25 kg Ge, 3.6 kg Si

— iZIP (higher threshold, with ER/NR discrimination) and HV
(low threshold, no discrimination) detectors

Future improvements and payload increase with aim to

reach neutrino floor

Very active detector R&D program to push threshold
down to single-electron sensitivity beyond the gram-
scale HVeV detectors and maintain electron recoil-
nuclear recoil discrimination below KeV by new
technologies like the Hybrid detector.



Expected Backgrounds in High Voltage Detectors
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Soaes  gyAfter Analysis « 325j and *H limiting backgrounds

Selection
— B-decay in detector bulk
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— 3H produced cosmogenically in
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Expected Backgrounds in iZIP Detectors

Analysis threshold = After Analysis Selection
0.17 keVnr
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Other backgrounds
controlled to be < 3H
and 32Si levels by:

— 6000 m.w.e

— Better screening of
materials

— Shielding design
Improvements

— Better Radon mitigation
(both in lab and during
fabrication)



Low-Threshold Ge Detector inside Fully Hermetic Ge Shielding

Wire-bonds Vs

12gm Ge coin. Next runs
with~30-75 gm Ge coins

650 gm upper and lower detectors along with
the donut veto (1” thick annulus) provide
excellent hermetic active shielding/veto




Detector Improvements

iZIP detector

N 10Ge, 2Si
K IZIP detectors

 Full
background
discrimination
down to ~ 1keV

8 Ge, 4 Si HV
\ - detectors

* Better
resolution (5
eV in Ge, 10 eV
in Si), lower
threshold
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lonization Yield

SuperCDMS-Soudan iZIP Performance

® Failing Charge Symmetry Selection
@ Passing Charge Symmetry Selection
O Low Yield Outliers
==+206 Nuclear Recoil Yield Selection
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