Northwestern

A sub-keV nuclear recoil ionization yield measurement in Si

Ben Schmidt for the SuperCDMS collaboration

Introduction

Nuclear recoil Ionization yield: Fundamental detector response for ionization sensitive detectors to assess sensitivity to nuclear recoils (WIMP scattering, CEvNS interactions)

Northwestern

Measurement with pulsed n-beam

N-beam from TUNL

- 1.889 MeV protons with 2.5 MHz pulsing
- LiF-on-Ta target -> ~56 keV low energy n-beam
- Aim for ²⁸Si elastic scattering resonance at 55.7 keV

Detectors

- 1 g Si HVeV detector (SuperCDMS)
- · EJ-301/309 liquid scintillator detectors (neutron tag) with PMT

Northwestern

Si HVeV detector

- SuperCDMS HVeV detector
 - Operated at ~50 mK in an adiabatic demagnetization refrigerator (ADR)
 - 1x1x0.4 cm³ Si crystal (0.93 g)
 - · 2 channel TES readout
 - Energy resolution: $\sigma_{ph} \sim 3 \text{ eV}$
 - Charge resolution: $\sigma_{eh} \sim 0.03 \text{ e}^{-h^+} (100 \text{ V HV})$

$$\overbrace{ \begin{array}{c} E_{total} = E_{recoil} + n_{eh}eV_b \\ = E_{recoil}(1 + eV_b/\epsilon_{eff} \cdot Y) \end{array} }$$

→0V mode V_b = 0: Total energy = Recoil energy
→HV mode V_b ≠ 0: Total energy = Recoil energy + NTL energy

Northwestern

Si HVeV detector

Phys. Rev. D 103, 032010

SuperCDMS HVeV detector

- Operated at ~50 mK in an adiabatic demagnetization refrigerator (ADR)
- 1x1x0.4 cm³ Si crystal (0.93 g)
- · 2 channel TES readout
- Energy resolution: $\sigma_{ph} \sim 3 \text{ eV}$
- Charge resolution: $\sigma_{eh} \sim 0.03 \text{ e}^{-h^+} (100 \text{ V HV})$

Northwestern

Data taking 2019:

- 3 weeks of data
- 50% duty cycle (ADR cycle)
- Two days at 0 V (Validation data)
- Data taken at 20, 100, and 180 V for exploring yield dependence on the electric field
- Here: Present 0 V crosscheck & 100 V NR yield measurement

Northwestern

Signal simulation

All Inner Ring at 85 cm 175 □ 3.8 keV □ 750 eV □ 220 eV_{near} □ 100 eV 30000 **Multiple HVeV Scatters** □ 2.0 keV □ 460 eV □ 220 eV_{far} keV_r bin] 150 tev **Fridge Scatters** Single HVeV Scatters 25000 SuperCDMS PRELIMINARY SuperCDMS PRELIMINARY Counts 20000 Counts [/0.01 100 15000 75 220 eV n-scattering 10000 50 signal 5000 25 ſ 0 10^{-1} 100 10¹ 0.0 0.1 0.2 0.8 0.3 0.4 0.5 0.6 0.7 Recoil energy [keV] Recoil energy (keV_r)

Kinematic n-scattering energy selection

Small Si detectors size suppresses multiple scatters

Northwestern

Data: Coincidence tagging (BPM, PMT, Si)

Northwestern

Ben Schmidt, IMPACT - Blois 2022, 24.05.2022

SUPER

Northwestern

Analysis scheme - Yield measurement

. Measurement: Total phonon energy spectrum for events coincident between HVeV and PMT

Comp. Phys. Commun.180, 2197

Bayesian Analysis Toolkit

2. **Simulation:** Geant4 simulation of recoil energy spectrum for events coincident between HVeV and PMT

4. Systematic Uncertainty:

- Coincidence timing window
- Time of flight window
- Neutron beam energy
- Detector energy calibration
- Impact ionization / Charge trapping
- Fano factor

Northwestern

Analysis scheme - 1st fit iteration

Northwestern

Analysis scheme - 2nd fit iteration

Northwestern

Results: 3rd fit iteration

Northwestern

Results

Northwestern

Thank you & we thank the team at

TUNL TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

Northwestern

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

 $0.00 \frac{11}{10^2}$

Ionization yield

Dougerty 1992

Izraelevitch 2017

Chavarria 2016

Gerbier 1990

CDMS II

This work (ring), stats.

This work (LW), stats.

SCDMS previous model

Lindhard k=0.146

.

SuperCDMS PRELIMINARY

 10^{3}

Recoil energy [eV]

This work (ring), empirical fit

 10^{4}

All our Si project limits were all based on a modified Lindhard that passes through Chavarria '16

Systematics on NR ionization yield

Northwestern