

Recent neutrino mass results from the KATRIN experiment

33rd Rencontres de Blois

Stephanie Hickford | Tuesday 24th May 2022

www.kit.edu

Outline

1. Neutrino mass determination

- Massive neutrinos
- Tritium single β-decay

2. The KATRIN experiment

- Beamline
- Integrated spectrum measurement

3. Analysis

- Spectra fitting
- Systematics

4. Recent results

- Measurement campaigns
- Individual campaign results
- Combined campaign results
- (Further) BSM analyses

5. Summary

Summary

Neutrino mass determination The KATRIN experiment Analysis Recent results 24th May 2022 2/13 Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment Institute for Astroparticle Physics

Massive neutrinos

Standard Model

- Mass generation Sterile
- Weak interactions LIV
- Oscillation RH current

Massive neutrinos as "cosmic architects"

Neutrino mass determination

24th May 2022

•

3/13

- -~ 336 ν/cm^3 in the universe
- Cosmic relic neutrinos

particle

physics

astro-

particle

physics

astro-

physics

Analysis

Understanding astro-physical processes

- Nuclear reactions in stars
- $-\nu$ as probes for cosmic rays

Recent results Summary 0000 Institute for Astroparticle Physics

Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

The KATRIN experiment

cosmo-

logy

Tritium single β -decay

Decay of molecular tritium produces a β -electron spectrum

 $\implies m_v^2$ can be determined with a precise measurement of the spectral shape near the endpoint

Beamline

Integrated spectrum measurement

Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

Spectra fitting

Data combination: Counts are summed, experimental parameters are averaged

Pixel combination

⇒ Uniform

⇒ Multi-patch

⇒ Multi-pixel

Run combination

- \implies Stacked
- → Multi-period

⇒ Multi-run

Fit is performed with many contributing spectra

- \implies One minimisation
- \implies One combined likelihood, $\mathcal L$

$$-\log \mathcal{L} = \sum_{i} -\log \mathcal{L}_{i}\left(\boldsymbol{m}_{v}^{2}, \boldsymbol{E}_{0i}, \mathrm{Sig}_{i}, \mathrm{Bg}_{i}\right)$$

Many parameters

- \implies One common neutrino mass, m_{ν}^2
- \implies Multiple E_0 , Sig, and Bg
- \implies Systematic parameters either common or multiple

 Neutrino mass determination
 The KATRIN experiment
 Analysis
 Recent results

 00
 00
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Systematics

Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

Institute for Astroparticle Physics

Measurement campaigns

KATRIN Neutrino mass Measurements

	Time (hrs)	$ ho d\sigma$ (m $^{-2}$)	Bg (mcps)
KNM1	522	$1.11 imes 10^{21}$	370
KNM2	294	$4.23 imes10^{21}$	278
KNM3a	220	$2.08 imes10^{21}$	137
KNM3b	224	$3.75 imes10^{21}$	258
KNM4	1267	$3.77 imes10^{21}$	150
KNM5	1232	$3.78 imes 10^{21}$	160

- Published results: KNM1 and KNM2 _
- Current analysis: KNM1 KNM5
- Data-taking: KNM6, KNM7, ... _

Neutrino mass determination

24th May 2022 9/13

The KATRIN experiment Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

Analysis

Recent results 0000

Summary Institute for Astroparticle Physics

Individual campaign results

First measurement campaign

Fit strategy: Stacked uniform fit

- \implies One spectrum with 27 data points
- \implies Four free fit parameters (m_{γ}^2 , E_0 , Sig, Bg)

Statistics dominated fit result

 $m_{
m v}^2 = -1.0 \pm 1.0 \, {
m eV^2}$

Factor of \sim 2 improvement on previous $m_{
m v}$ limit

 $m_{
m v} <$ 1.1 eV (90 % CL)

Phys. Rev. Lett. 123 (2019) 221802

Second measurement campaign

Fit strategy: Stacked multi-ring fit

$$\implies$$
 12 spectra with 12 \times 28 = 336 data points

 \implies 37 free fit parameters (m_{γ}^2 , 12· E_0 , 12·Sig, 12·Bg)

Statistics dominated fit result

 $m_{
m v}^2 = 0.26 \pm 0.34\,{
m eV}^2$

New sub-eV neutrino mass limit

 $m_{
m v} < 0.9\,{
m eV}$ (90 % CL)

Nat. Phys. 18, 160-166 (2022)

Neutrino mass determination 00 10/13 24th May 2022

00 00 Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

The KATRIN experiment

Analysis

Recent results

Combined campaign results

Fit strategy: Multi-period uniform fit

Neutrino mass determination

11/13

24th May 2022

- \implies Data is stacked within the measurement phases
- \implies Two spectra with 27+28 = 55 data points
- \implies 7 free fit parameters (m_{γ}^2 , 2· E_0 , 2·Sig, 2·Bg)

Statistics dominated fit result

 $m_{
m v}^2 = 0.08 \pm 0.32\,{
m eV}^2$

Sub-eV upper limit on the neutrino mass

 $m_{
m v} < 0.75\,{
m eV}$ (90 % CL)

Nat. Phys. **18**, 160–166 (2022) Supplementary material

Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment

The KATRIN experiment

(Further) BSM analyses

- eV-sterile neutrinos

Constrain parameter space of eV-steriles from spectrum shape

- → First measurement campaign: Phys. Rev. Lett. 126 (2021) 2011.05087
- ⇒ First and second measurement campaigns: Phys. Rev. D 105 072004

keV-sterile neutrinos

Constrain parameter space of keV-steriles with dedicated measurements over larger energy range

Cosmic relic neutrinos

Constrain local overdensity of relic neutrinos from peak search

⇒ First and second measurement campaigns: arXiv: 2202.04587

Lorentz invariance violation

Constrain LIV from sidereal modulation of tritium endpoint

→ First measurement campaign: In preparation

Right-handed currents

Constrain exotic weak interactions from spectrum shape

Exclusion curve (mass vs. mixing angle parameter space) for eV-sterile neutrinos

Neutrino mass o	determination	The KATRIN experiment	Analysis	Recent results	Summary
00		00	00	0000	0
12/13 24 th I	May 2022	Stephanie Hickford: Recent neutrino mass resu	ults from the KATRIN experiment	Institute	ofor Astroparticle Physics

Summary

Leading upper limit on the neutrino mass from direct single $\beta\text{-decay}$ measurements

➡ KATRIN combined analysis of KNM1 and KNM2 measurement campaigns

 $m_{
m v} <$ 0.75 eV (90 % CL)

Nat. Phys. 18, 160-166 (2022)

Towards improved sensitivity

- KATRIN combined analysis of KNM1 to KNM5 measurement campaigns is ongoing
- ⇒ Expected sensitivity <0.5 eV</p>

 Neutrino mass determination
 The KATRIN experiment
 Analysis
 Recent results

 00
 00
 00
 000
 0000

 13/13
 24th May 2022
 Stephanie Hickford: Recent neutrino mass results from the KATRIN experiment
 0000

Summary