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Jiangmen Underground Neutrino Observatory
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• JUNO experiment under construction in

Jiangmen province in China at ~53 km

from two nuclear power plants (total

thermal power of 26.6 GW)

• Main goal is the determination of neutrino

mass ordering at 3𝜎 level in 6 years of data

taking using reactor electron antineutrinos

• Detector located at 700 m depth to reduce

muon flux and muon induced backgrounds

• Ancillary 1-ton TAO detector (Taishan

Antineutrino Observatory) located at ~30 m

from a reactor to precisely measure the

neutrino energy spectrum

F. Perrot, The JUNO experiment



The JUNO Collaboration

3F. Perrot, The JUNO experiment
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The JUNO Collaboration

4F. Perrot, The JUNO experiment

Last meeting in person in January, 2020 in Nanning, China



JUNO: a huge liquid scintillator detector

5F. Perrot, The JUNO experiment

 A 20 kton liquid scintillator experiment

 the biggest LS detector ever built !

 An acrylic sphere of 35.4 m diameter

immersed in a cylindrical water pool

 A large and precise calorimeter

Experiment
Mass 

(tons)

Energy resolution

at 1 MeV (𝝈)

Daya Bay 20 ~7.5%

Borexino ~300 ~5%

KamLAND ~1,000 ~6%

JUNO ~20,000 ~3%

D=43.5 m

H
=

4
3
.5

 m

Successful R&D program on LS transparency, 

PMT  performances and calibration system 
Nucl. Instrum. Meth. A 988 (2021) 164823

Prog. Part. Nucl. Phys. 123 (2022) 103927 

JHEP 03 (2021) 004

To give you

the scale



JUNO: a huge liquid scintillator detector

6F. Perrot, The JUNO experiment

17612 20-inch PMTs

25600 3-inch PMTs

 78% photocoverage
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Electron antineutrino detection

Neutrino signature :

• Prompt signal from e+: ionization+annihilation in 2𝛾 (1-10 MeV)  visible energy

• Delayed signal from neutron: capture on 1H (2.2 MeV)

• Time correlation: ~ 200 µs

Energy threshold: 1.8 MeV

Visible energy 𝐸𝑣𝑖𝑠 = 𝐸(𝑒+) = 𝐸 ഥ𝜈𝑒 − 0.8 MeV

F. Perrot, The JUNO experiment

• Electron antineutrinos detected by Inverse Beta Decay (IBD) :
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Signal and backgrounds

F. Perrot, The JUNO experiment

Main selection cuts:

 Energy threshold: 𝐸𝑣𝑖𝑠 > 0.7 𝑀𝑒𝑉

 Fiducial volume cut: RLS < 17.2 𝑚

 Timing cut: Δ𝑇𝑝−𝑑 < 1𝑚𝑠

 Spatial cut: 𝑅𝑝−𝑑 < 1.5 𝑚

 Cosmic muon veto cuts

 after selection cuts, ~47 ഥ𝜈𝑒 evt/day (~82% efficiency) and ~3.6 bckg evt/day

 Visible energy spectrum from

oscillated reactor 𝝂𝒆 in JUNO

 Background contribution from

five main sources

 Accidentals are mainly coming

from radiogenic elements such

as 238U/232Th/40K  material

screening strategy achieved
JHEP 11 (2021) 102

arXiv:2204.13249



Neutrino oscillation studies using reactor ഥ𝜈𝑒
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 JUNO’s main goal is to determine the Neutrino Mass Ordering (normal or inverted)

at 3𝜎 level using spectral information in the oscillation pattern

 JUNO will detect for the 1st time Δ𝑚21
2 and Δ𝑚32

2 oscillation modes simultaneously

F. Perrot, The JUNO experiment

 Subpercent precision will be reached for 3 of the parameters with JUNO only !
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JUNO: an observatory for rare events

F. Perrot, The JUNO experiment

JUNO will have a vast neutrino program 

beyond reactor antineutrinos !

 “Neutrino Physics with JUNO”, J. Phys. G 43 

(2016) no.3, 030401

 “JUNO physics and detector”, Prog. Part. Nucl. 

Phys. 123 (2022) 103927 

Neutrino source Signal rate Energy range

Reactor ~47 evts/day 0-12 MeV

SN burst ~104 evts at 10 kpc 0-80 MeV

Diffuse SN background 2-4 evts/year 10-40 MeV

Sun 8B hundreds /year 0-16 MeV

Earth ~400 evts/year 0-3 MeV

Earth’s atmosphere hundreds /year 0.1-100 GeV

Described in this talk



Core Collapse Supernova neutrinos
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 A Core-Collapse Supernova (CCSN) releases 99% of its energy in neutrinos and

antineutrinos of all flavors

 Rate of CCSN in the Milky Way is 1.63 ± 0.46/century New Astronomy Vol.83, 101498

 JUNO with 20 kt LS has excellent capability of detecting all neutrino flavors

F. Perrot, The JUNO experiment

Type Process
Nb of evts

@10 kpc

CC (IBD) ഥ𝜈𝑒 + 𝑝 → 𝑒+ + 𝑛 ~5000

eES 𝜈 + 𝑒 → 𝜈 + 𝑒 ~300

pES 𝜈 + 𝑝 → 𝜈 + 𝑝 ~2000

NC 𝜈 + 12𝐶 → 𝜈 + 12𝐶∗ ~300

CC
𝜈𝑒 +

12𝐶 → 𝑒− + 12𝑁
𝜈𝑒 +

12𝐶 → 𝑒− + 12𝐵
~200

Main goals:

 Measurement of flavour content, time evolution, flux, energy spectrum

 Study of star parameters, SN physics, late-stage stellar evolution

 Constrain of absolute neutrino mass 𝑚𝜈 < (0.83 ± 0.24) eV (95% CL) @10 kpc
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Multi-Messenger trigger in JUNO
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 JUNO has a great potential to observe several

astronomical events in neutrinos:

 Supernovae (Pre-burst, type Ia, CCSN type II)

 Neutron star mergers

 Gamma ray bursts

F. Perrot, The JUNO experiment

 Design of a Multi-Messenger (MM) trigger system

in order to monitor transient signals in real time

from the entire sky via all neutrino flavors

 Two trigger systems in JUNO: Global trigger with

Ethr ~200 keV and MM trigger with Ethr ~20 keV

 Online SN monitoring with IBD events: 50% alert

efficiency for 30 solar masses at ~300 kpc

 JUNO will be a powerful neutrino telescope for transient MM observations

 Major role in the next-generation Supernova Early Warning System (SNEWS2.0)

False alert

rate<1/year

Preliminary



Diffuse Supernova Neutrino Background
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 Diffuse Supernova Neutrino Background (DSNB): integrated signal from all the

SN explosions in the Universe.

 Holds the precise information on the average CCSN neutrino spectrum, cosmic

star-formation rate and fraction of failed black-hole forming SNe

F. Perrot, The JUNO experiment

 ഥ𝜈𝑒 IBD DSNB signal in JUNO: constrained at low E (<10 MeV) by reactor ഥ𝜈𝑒
′𝑠, at

high E by NC atmospheric 𝜈′s

 pulse shape discrimination in order to reduce NC atm 𝜈′s and fast neutrons

 Optimal energy window [12-30 MeV] with 2-4 events/year expected

 JUNO will be one of the best candidates to observe DSNB signal for the 1st time 

 5𝜎 sensitivity to

detect DSNB signal

with <10 years using

nominal SN rate
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Solar neutrinos

14F. Perrot, The JUNO experiment

 Neutrinos are produced in thermonuclear

fusion reactions in the solar core up to 16 MeV

 Direct information about the solar metallicity

 Study of fundamental neutrino properties and

neutrino interactions with matter

 JUNO can benefit from its huge LS mass to detect thousands of solar neutrinos

 Main channel: Elastic Scattering (ES) on electrons

 Statistics for 200 kton.year exposure



Solar neutrinos

15F. Perrot, The JUNO experiment

High energy neutrinos: from 8B

 Neutrino-electron ES

 2 MeV energy threshold

 Assume LS U/Th radiopurity of 10-17 g/g

 Background reduction using fiducial volume

cuts and active cosmogenic veto

 60,000 expected signal events and 30,000

bckg events in 200 kton.year exposure

 Day-night asymmetry at a level of 0.9%

 Upturn of Pee at 3σ if 𝛥𝑚21
2 = 7.5 × 10−5 𝑒𝑉2

 Under study: independent 8B solar neutrinos

fluxes using CC and NC reactions on 13C

 Possibility to constrain sin2 𝜃12 and

𝛥𝑚21
2 oscillation parameters using both

solar and reactor neutrinos

Chinese Phys. C45 0230042 (2021)
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 JUNO has the potential to detect 7Be, pep and CNO neutrinos with highly improved

accuracy with respect to current state-of-the-art (depending on radiopurity scenario)

Current best result

Solar neutrinos

16F. Perrot, The JUNO experiment

Low-intermediate energy neutrinos: from 7Be, pep and CNO

 Huge statistics with JUNO compared to previous experiments

 Large mass allow to perform stringent fiducial volume cuts (R<13-15 m)

 Sensitivities very dependent on the intrinsic radioactivity of the liquid scintillator

(For U/Th impurities, Reactor/Baseline: 10-15 g/g, Solar/Ideal:10-17 g/g)

 Borexino result for 7Be (2.7%) would be

matched in 1 year of data taking in all the

scenarios short-term measurements

 Borexino result for pep and CNO may be

matched and overcomed in few years

depending on the scenarios long-term meas.

7Be

Preliminary
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Geo-neutrinos

F. Perrot, The JUNO experiment

 Unique neutrino source to probe the inner structure of Earth, especially the

Uranium (U) and Thorium (Th) abundances (no access to 40K due to the 1.8 MeV threshold)

 Measure Th/U ratio in crust and mantle to understand Earth’s formation

 Estimation of U and Th radiogenic power contribution to terrestrial heat production

 Local geological studies ongoing to constrain crustal 

contribution (and thus derive mantle contribution)

and to tackle largest uncertainty sources

 Up to now, only Borexino experiment and KamLAND experiments have detected 

geo-neutrinos with 52.6−8.6
+9.4(𝑠𝑡𝑎𝑡)−2.1

+2.7(𝑠𝑦𝑠) and 168.6−26.5
+26.3 events, respectively

1002 rock samples around JUNO

Preliminary
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Geo-neutrinos

F. Perrot, The JUNO experiment

 Expected signal in JUNO of 39 TNU (Terrestrial Neutrino Units), i.e. ~400 geo-

neutrinos per year  more geo-neutrinos than ever measured in one year only

 The 500 km range of the crust around JUNO will contribute to more than 50% of

the total signal  local refined geological models needed for precise measurement

of the crustal signal and for disentanglement of the mantle signal

 JUNO has the potential to constrain Th/U ratio in the observed geoneutrino signal  

Geoneutrino

signal 

Signal

Reactor

9Li/8He

Accidentals

Fast neutrons

Fixed chondritic Th/U ratio=3.9

Only 6% stat. uncertainty at 

1𝜎 after 6 years of data taking
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Surface buildings and experimental hall

Vertical shaft

563 m

Experimental hall

JUNO experimental hall
Surface buildings

5000 m3 LS

storage tank

 Civil construction finished in Dec, 2021
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Civil construction and detector installation
Slope tunnelJUNO surface buildings

Inside the 

water pool

Stainless steel truss + platform

for acrylic vessel installation

5000 m3 LS

storage tank
Distillation plant
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Summary and conclusions

F. Perrot, The JUNO experiment

 JUNO is a next-generation neutrino experiment with huge performances:

• the largest LS-based detector with 20 kton

• an unprecedented energy resolution of 3% (𝜎) at 1 MeV

• a precise energy calibration program to reach less than 1% uncertainty

 JUNO will address many neutrino questions:

• Mass ordering determination at 3𝜎 level and sub-percent precision

measurement of 3 oscillation paramaters (sin2 𝜃12 , Δ𝑚21
2 , Δ𝑚31

2 )

• Detection of CCSN with a JUNO trigger strategy for Multi-Messenger physics

• Possible first detection of neutrinos from DSNB

• Improvement on solar neutrino fluxes (8B,…) depending on the LS radiopurity

• Potential to constrain Th/U ratio in Earth by detecting O (100) geo-𝜈′𝑠 /year

 JUNO construction: along the realization path despite COVID-19 situation with 

detector completion and data taking expected by end of 2023


