

Status of the JUNO experiment and physics potential to detect low energy neutrinos from CCSN, DSNB, Sun and inner Earth

Frédéric Perrot <u>frederic.perrot@u-bordeaux.fr</u> on behalf of the JUNO collaboration

Jiangmen Underground Neutrino Observatory

- JUNO experiment under construction in Jiangmen province in China at ~53 km from two nuclear power plants (total thermal power of 26.6 GW)
- Main goal is the determination of neutrino mass ordering at 3σ level in 6 years of data taking using reactor electron antineutrinos
- Detector located at 700 m depth to reduce muon flux and muon induced backgrounds
- Ancillary 1-ton TAO detector (Taishan Antineutrino Observatory) located at ~30 m from a reactor to precisely measure the neutrino energy spectrum

The JUNO Collaboration

77 institutions, ~650 members

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	SAPHIR	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
China	CIAE	China	Zhengzhou U.	Latvia	IECS
China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)
China	ECUST	China	CUG-Beijing	Russia	INR Moscow
China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	MSU
China	IHEP	Czech	Charles U.	Slovakia	FMPICU
China	Jilin U.	F inland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nankai U.	France	CPPM Marseille	Thailand	NARIT
China	NCEPU	France	IPHC Strasbourg	Thailand	PPRLCU
China	Pekin U.	France	Subatech Nantes	Thailand	SUT
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD-G
China	Shanghai JT U.	Germany	TUM	USA	UC Irvine
China	IGG-Beijing	Germany	U. Hamburg		
China	IGG-Wuhan	Germany	FZJ-IKP		

The JUNO Collaboration

Last meeting in person in January, 2020 in Nanning, China

The 15th JUNO Collaboration Meeting

January 13-17, 2020, Guangxi University, Nanning

JUNO: a huge liquid scintillator detector

- A 20 kton liquid scintillator experiment
 → the biggest LS detector ever built!
- An acrylic sphere of 35.4 m diameter immersed in a cylindrical water pool
- A large and precise calorimeter

Experiment	Mass (tons)	Energy resolution at 1 MeV (σ)		
Daya Bay	20	~7.5%		
Borexino	~300	~5%		
KamLAND	~1,000	~6%		
JUNO	~20,000	~3%		

Successful R&D program on LS transparency, PMT performances and calibration system

Nucl. Instrum. Meth. A 988 (2021) 164823 Prog. Part. Nucl. Phys. 123 (2022) 103927 JHEP 03 (2021) 004

JUNO: a huge liquid scintillator detector

Electron antineutrino detection

Electron antineutrinos detected by Inverse Beta Decay (IBD) :

$$\overline{v}_e + p \rightarrow e^+ + n$$

Energy threshold: 1.8 MeV

Visible energy
$$E_{vis} = E(e^+) = E(\overline{\nu_e}) - 0.8 \text{ MeV}$$

Neutrino signature:

- Prompt signal from e⁺: ionization+annihilation in 2γ (1-10 MeV) \rightarrow visible energy
- Delayed signal from neutron: capture on ¹H (2.2 MeV)
- Time correlation: ~ 200 μs

Signal and backgrounds

- Visible energy spectrum from oscillated reactor $\overline{\nu_e}$ in JUNO
- Background contribution from five main sources
- Accidentals are mainly coming from radiogenic elements such as ²³⁸U/²³²Th/⁴⁰K → material screening strategy achieved JHEP 11 (2021) 102

Main selection cuts:

• Energy threshold: $E_{vis} > 0.7 \, MeV$

• Fiducial volume cut: $R_{LS} < 17.2 m$

■ Timing cut: $\Delta T_{p-d} < 1 \ ms$

• Spatial cut: $R_{p-d} < 1.5 m$

Cosmic muon veto cuts

Background	Rate (day^{-1})
Geo-neutrinos	1.2
Accidentals	0.8
$^9 \text{Li}/^8 \text{He}$	1.4
Fast neutrons	0.1
$^{13}\mathrm{C}(\alpha,\mathrm{n})^{16}\mathrm{O}$	0.05

Neutrino oscillation studies using reactor $\overline{\nu_e}$

- JUNO's main goal is to determine the Neutrino Mass Ordering (normal or inverted) at 3σ level using spectral information in the oscillation pattern
- JUNO will detect for the 1st time Δm_{21}^2 and Δm_{32}^2 oscillation modes simultaneously

	Δm_{31}^2	Δm_{21}^2	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$
JUNO 6 years	$\sim 0.2\%$	$\sim 0.3\%$	$\sim \! 0.5\%$	$\sim 12\%$
PDG2020	1.4%	2.4%	4.2%	3.2%

→ Subpercent precision will be reached for 3 of the parameters with JUNO only!

JUNO: an observatory for rare events

JUNO will have a vast neutrino program beyond reactor antineutrinos!

- "Neutrino Physics with JUNO", J. Phys. G **43** (2016) no.3, 030401
- "JUNO physics and detector", Prog. Part. Nucl. Phys. 123 (2022) 103927

Neutrino source	Signal rate	Energy range	
Reactor	~47 evts/day	0-12 MeV	
SN burst	~10 ⁴ evts at 10 kpc	0-80 MeV	
Diffuse SN background	2-4 evts/year	10-40 MeV	
Sun ⁸ B	hundreds /year	0-16 MeV	
Earth	~400 evts/year	0-3 MeV	
Earth's atmosphere	hundreds /year	0.1-100 GeV	

Described in this talk

Core Collapse Supernova neutrinos

- A Core-Collapse Supernova (CCSN) releases 99% of its energy in neutrinos and antineutrinos of all flavors
- Rate of CCSN in the Milky Way is 1.63 ± 0.46/century New Astronomy Vol.83, 101498
- JUNO with 20 kt LS has excellent capability of detecting all neutrino flavors

Туре	Process	Nb of evts @10 kpc
CC (IBD)	$\overline{\nu_e} + p \rightarrow e^+ + n$	~5000
eES	$v + e \rightarrow v + e$	~300
pES	$v + p \rightarrow v + p$	~2000
NC	$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	~300
CC	$v_e + {}^{12}C \rightarrow e^- + {}^{12}N$ $v_e + {}^{12}C \rightarrow e^- + {}^{12}B$	~200

Main goals:

- Measurement of flavour content, time evolution, flux, energy spectrum
- Study of star parameters, SN physics, late-stage stellar evolution
- Constrain of absolute neutrino mass m_{ν} < (0.83 ± 0.24) eV (95% CL) @10 kpc

Multi-Messenger trigger in JUNO

- JUNO has a great potential to observe several astronomical events in neutrinos:
 - Supernovae (Pre-burst, type Ia, CCSN type II)
 - Neutron star mergers
 - Gamma ray bursts
- Design of a Multi-Messenger (MM) trigger system in order to monitor transient signals in real time from the entire sky via all neutrino flavors
- Two trigger systems in JUNO: Global trigger with E_{thr} ~200 keV and MM trigger with E_{thr} ~20 keV
- Online SN monitoring with IBD events: 50% alert efficiency for 30 solar masses at ~300 kpc

- → JUNO will be a powerful neutrino telescope for transient MM observations
- → Major role in the next-generation Supernova Early Warning System (SNEWS2.0)

Diffuse Supernova Neutrino Background

- Diffuse Supernova Neutrino Background (DSNB): integrated signal from all the SN explosions in the Universe.
- Holds the precise information on the average CCSN neutrino spectrum, cosmic star-formation rate and fraction of failed black-hole forming SNe
- $\bar{\nu_e}$ IBD DSNB signal in JUNO: constrained at low E (<10 MeV) by reactor $\bar{\nu_e}'s$, at high E by NC atmospheric $\nu's$
- \rightarrow pulse shape discrimination in order to reduce NC atm ν 's and fast neutrons
- → Optimal energy window [12-30 MeV] with 2-4 events/year expected

 \rightarrow 5 σ sensitivity to detect DSNB signal with <10 years using nominal SN rate

→ JUNO will be one of the best candidates to observe DSNB signal for the 1st time

Solar neutrinos

- Neutrinos are produced in thermonuclear fusion reactions in the solar core up to 16 MeV
- Direct information about the solar metallicity
- Study of fundamental neutrino properties and neutrino interactions with matter

- JUNO can benefit from its huge LS mass to detect thousands of solar neutrinos
- Main channel: Elastic Scattering (ES) on electrons
- Statistics for 200 kton.year exposure

	Type	Reaction	Threshold	Final products	$^{8}\mathrm{B}$	hep
1	ES	$\nu + e^- \rightarrow \nu + e^-$	0	e^{-}	3×10^{5}	640
2	CC	$\nu_e + ^{12}{\rm C} \to e^- + ^{12}{\rm N}$	$16.8 \mathrm{MeV}$	e^{-}	0	0.41
3	CC	$\nu_e + ^{13}{\rm C} \to e^- + ^{13}{\rm N}$	$2.2~\mathrm{MeV}$	e^- and ¹³ N decay	3768	14
4	NC	$\nu + ^{12} \text{C} \to \nu + ^{12} \text{C}^* (1^+)$	$15.1 \mathrm{MeV}$	γ	0.2	5
5	NC	$\nu + {}^{13} \text{ C} \rightarrow \nu + {}^{13} \text{ C}^* \left(\frac{3}{2}^-\right)$	$3.685~\mathrm{MeV}$	γ	3165	13.5

Solar neutrinos

Chinese Phys. C45 0230042 (2021)

- Neutrino-electron ES
- 2 MeV energy threshold
- Assume LS U/Th radiopurity of 10⁻¹⁷ g/g
- Background reduction using fiducial volume cuts and active cosmogenic veto
- → 60,000 expected signal events and 30,000 bckg events in 200 kton.year exposure
- Day-night asymmetry at a level of 0.9%
- Upturn of P_{ee} at 3σ if $\Delta m_{21}^2 = 7.5 \times 10^{-5} \ eV^2$
- Under study: independent ⁸B solar neutrinos fluxes using CC and NC reactions on ¹³C
- Possibility to constrain $\sin^2 \theta_{12}$ and Δm_{21}^2 oscillation parameters using both solar and reactor neutrinos

Solar neutrinos

Low-intermediate energy neutrinos: from ⁷Be, pep and CNO

- Huge statistics with JUNO compared to previous experiments
- Large mass allow to perform stringent fiducial volume cuts (R<13-15 m)
- Sensitivities very dependent on the intrinsic radioactivity of the liquid scintillator (For U/Th impurities, Reactor/Baseline: 10⁻¹⁵ g/g, Solar/Ideal:10⁻¹⁷ g/g)

- ✓ Borexino result for ⁷Be (2.7%) would be matched in 1 year of data taking in all the scenarios → short-term measurements
- ✓ Borexino result for pep and CNO may be matched and overcomed in few years depending on the scenarios → long-term meas.

→ JUNO has the potential to detect ⁷Be, pep and CNO neutrinos with highly improved accuracy with respect to current state-of-the-art (depending on radiopurity scenario)

Geo-neutrinos

- Unique neutrino source to probe the inner structure of Earth, especially the Uranium (U) and Thorium (Th) abundances (no access to 40K due to the 1.8 MeV threshold)
- Measure Th/U ratio in crust and mantle to understand Earth's formation
- Estimation of U and Th radiogenic power contribution to terrestrial heat production

 Local geological studies ongoing to constrain crustal contribution (and thus derive mantle contribution)
 and to tackle largest uncertainty sources

• Up to now, only Borexino experiment and KamLAND experiments have detected geo-neutrinos with $52.6^{+9.4}_{-8.6}(stat)^{+2.7}_{-2.1}(sys)$ and $168.6^{+26.3}_{-26.5}$ events, respectively

Geo-neutrinos

- Expected signal in JUNO of 39 TNU (Terrestrial Neutrino Units), i.e. ~400 geoneutrinos per year → more geo-neutrinos than ever measured in one year only
- The 500 km range of the crust around JUNO will contribute to more than 50% of the total signal → local refined geological models needed for precise measurement of the crustal signal and for disentanglement of the mantle signal

→ JUNO has the potential to constrain Th/U ratio in the observed geoneutrino signal

Surface buildings and experimental hall

Civil construction and detector installation

Stainless steel truss + platform for acrylic vessel installation

Summary and conclusions

- JUNO is a next-generation neutrino experiment with huge performances:
 - the largest LS-based detector with 20 kton
 - an unprecedented energy resolution of 3% (σ) at 1 MeV
 - a precise energy calibration program to reach less than 1% uncertainty
- JUNO will address many neutrino questions:
 - Mass ordering determination at 3σ level and sub-percent precision measurement of 3 oscillation parameters ($\sin^2 \theta_{12}$, Δm_{21}^2 , Δm_{31}^2)
 - Detection of CCSN with a JUNO trigger strategy for Multi-Messenger physics
 - Possible first detection of neutrinos from DSNB
 - Improvement on solar neutrino fluxes (8B,...) depending on the LS radiopurity
 - Potential to constrain Th/U ratio in Earth by detecting O(100) geo-v's /year
- JUNO construction: along the realization path despite COVID-19 situation with detector completion and data taking expected by end of 2023