Exploring the Dark Universe with the Simons Observatory

Steve Choi (Cornell) for the Simons Observatory Collaboration

> Rencontres de Blois May 25, 2022

Photo: Debra Kellner

Simons Observatory (SO)

>10 countries, >300 people

2009 - 2013Full sky

0.35 - 10 mm (9 bands)5 - 33' resolution

2008 - 2022 +~40% sky fraction Noise \sim 1.5–3 times better than Planck

1.4 - 10 mm (5 bands)

1 - 7' resolution

~40% sky fraction Noise ~3 times better than ACT

1 - 10 mm (6 bands)1 - 7' resolution

2023 - 2030 +

Planck

Atacama Cosmology **Telescope**

Simons **Observatory**

	Parameter	SO-Baseline ^b	${\bf SO-Baseline}^{\rm c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\operatorname{e}}$	Method	Sec.
		(no syst)					
Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens	3.4
perturbations	$e^{-2 au}\mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%	TT/TE/EE	4.2
	$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$	5.3
	0112	1	2	1		kSZ + LSST-LSS	7.5
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE+\kappa\kappa$	4.1
Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa\kappa + \text{DESI-BAO}$	5.2
		0.035	0.04	0.03	0.1	$tSZ-N \times LSST-WL$	7.1
		0.036	0.05	0.04		tSZ-Y + DESI-BAO	7.2
Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	2 %	1%	7%	$\kappa\kappa + \text{LSST-LSS}$	5.3
		1.2%	2 %	1%		tSZ-N \times LSST-WL	7.1
	$H_0 ~(\Lambda { m CDM})$	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$	4.3
	27 07		~ /				
Galaxy evolution	$\eta_{ m feedback}$	2%	3%	2%	50-100%	kSZ + tSZ + DESI	7.3
	$p_{ m nt}$	6%	8%	5%	50-100%	kSZ + tSZ + DESI	7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

	Parameter	${f SO-Baseline^b}\ ({ m no \ syst})$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method	Sec.
Primordial perturbations	$e^{-2 au} {\cal P}(k=0.2/{ m Mpc}) \ f_{ m NL}^{ m local}$	$0.0024 \\ 0.4\% \\ 1.8 \\ 1$	$egin{array}{c} 0.003 \ 0.5\% \ 3 \ 2 \end{array}$	$0.002 \\ 0.4\% \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	$BB + \text{ext delens} TT/TE/EE \kappa\kappa \times \text{LSST-LSS} + 3\text{-pt} \text{kSZ} + \text{LSST-LSS}$	$3.4 \\ 4.2 \\ 5.3 \\ 7.5$
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE+\kappa\kappa$	4.1
Neutrino mass	$\Sigma m_ u$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	$0.04 \\ 0.04 \\ 0.05$	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa \kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO	$5.2 \\ 7.1 \\ 7.2$
Deviations from Λ	$\sigma_8(z=1-2) \ H_0 (\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\kappa\kappa + \text{LSST-LSS} \ ext{tSZ-N} imes ext{LSST-WL} \ TT/TE/EE + \kappa\kappa$	$5.3 \\ 7.1 \\ 4.3$
Galaxy evolution	$\eta_{ ext{feedback}} \ p_{ ext{nt}}$	2% 6%	3% 8%	$2\% \\ 5\%$	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$	7.3 7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

SO science overview (arXiv:1808.07445)

	Parameter	$egin{array}{c} { m SO-Baseline}^{ m b} \ ({ m no \ syst}) \end{array}$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method	Sec.			
How many relativistic species are there?										
		1	2	1		kSZ + LSST-LSS	7.5			
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE+\kappa\kappa$	4.1			
Neutrino mass	$\Sigma m_{ u}$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	$0.04 \\ 0.04 \\ 0.05$	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa \kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO	$5.2 \\ 7.1 \\ 7.2$			
Deviations from Λ	$\sigma_8(z=1-2) onumber \ H_0 \ (\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\begin{array}{l} \kappa\kappa + \text{LSST-LSS} \\ \text{tSZ-N} \times \text{LSST-WL} \\ TT/TE/EE + \kappa\kappa \end{array}$	$5.3 \\ 7.1 \\ 4.3$			
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	$2\% \\ 6\%$	3% 8%	2% 5%	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$	7.3 7.3			
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6			

Fundamental physics from the CMB with SO

SO science overview (arXiv:1808.07445)

	Parameter	${f SO-Baseline^b}\ ({ m no \ syst})$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method	Sec.
Primordial perturbations	$e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc})$	$0.0024 \\ 0.4\%$	0.003 0.5%	$0.002 \\ 0.4\%$	$0.03 \\ 3\%$	BB + ext delens TT/TE/EE	3.4 4.2

What is the mass sum of the neutrinos?

Neutrino mass	$\Sigma m_{ u}$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	0.04 0.04 0.05	$0.03 \\ 0.03 \\ 0.04$	0.1	$\kappa\kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO	$5.2 \\ 7.1 \\ 7.2$
Deviations from Λ	$\sigma_8(z=1-2) \ H_0 (\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\begin{array}{l} \kappa\kappa + \text{LSST-LSS} \\ \text{tSZ-N} \times \text{LSST-WL} \\ TT/TE/EE + \kappa\kappa \end{array}$	$5.3 \\ 7.1 \\ 4.3$
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	2% 6%	3% 8%	2% 5%	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$	7.3 7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

	Parameter	$egin{array}{c} { m SO-Baseline}^{ m b} \ ({ m no \ syst}) \end{array}$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method	Sec.
Primordial perturbations	$e^{-2 au} {\mathcal P}(k=0.2/{ m Mpc}) \ f_{ m NL}^{ m local}$	$0.0024 \\ 0.4\% \\ 1.8 \\ 1$	0.003 0.5% 3 2	$0.002 \\ 0.4\% \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	$BB + \text{ext delens} TT/TE/EE \kappa\kappa \times \text{LSST-LSS} + 3\text{-pt} \text{kSZ} + \text{LSST-LSS}$	3.4 4.2 5.3 7.5
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE+\kappa\kappa$	4.1

Is the accelerated expansion just Λ ?

Deviations from Λ	$\sigma_8(z=1-2) \ H_0 \; (\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\kappa\kappa + \text{LSST-LSS} \\ \text{tSZ-N} \times \text{LSST-WL} \\ TT/TE/EE + \kappa\kappa$	$5.3 \\ 7.1 \\ 4.3$
Galaxy evolution	$\eta_{ ext{feedback}} \ p_{ ext{nt}}$	$2\% \\ 6\%$	3% 8%	2% 5%	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$	$7.3 \\ 7.3$
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

Hubble constant from the CMB

 $D_A^* = r_s^* / \theta^*$

bigger distance = older universe older universe = smaller expansion rate

Surface of last scattering

Sound

horizon

ACT DR4 H₀ Estimate (blind analysis)

ACT DR4 + WMAP: $H_0 = 67.6 \pm 1.1 \text{ km/s/Mpc}$

- agrees with Planck within 1σ
- agrees with SNIa-TRGB within 1σ
- ~4σ tension with SNIa-Cepheids

Since then, SPT also measured H_0 = 68.8 ± 1.5 km/s/Mpc (Dutcher et al. 2021)

	Parameter	${f SO-Baseline^b}\ ({ m no \ syst})$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method	Sec.
Primordial perturbations	$e^{-2 au} {\cal P}(k=0.2/{ m Mpc}) \ f_{ m NL}^{ m local}$	$0.0024 \\ 0.4\% \\ 1.8 \\ 1$	$egin{array}{c} 0.003 \ 0.5\% \ 3 \ 2 \end{array}$	$0.002 \\ 0.4\% \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	$BB + \text{ext delens} TT/TE/EE \kappa\kappa \times \text{LSST-LSS} + 3\text{-pt} \text{kSZ} + \text{LSST-LSS}$	$3.4 \\ 4.2 \\ 5.3 \\ 7.5$
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE+\kappa\kappa$	4.1
Neutrino mass	$\Sigma m_ u$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	$0.04 \\ 0.04 \\ 0.05$	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa \kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO	$5.2 \\ 7.1 \\ 7.2$
Deviations from Λ	$\sigma_8(z=1-2) \ H_0 (\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%	$\kappa\kappa + \text{LSST-LSS} \ ext{tSZ-N} imes ext{LSST-WL} \ TT/TE/EE + \kappa\kappa$	$5.3 \\ 7.1 \\ 4.3$
Galaxy evolution	$\eta_{ ext{feedback}} \ p_{ ext{nt}}$	2% 6%	3% 8%	$2\% \\ 5\%$	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$	7.3 7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

SO science overview (arXiv:1808.07445)

SO noise curves

With realistic calculations/assumptions on instrument sensitivities and atmospheric noise.

SO simulated power spectra

Need to measure many modes to high precision to study the dark universe with SO.

 \rightarrow Need a large sky area survey with a large telescope.

SO science overview (arXiv:1808.07445)

Simons Observatory Survey

SO science overview (arXiv:1808.07445)

SO telescopes

Large Aperture Telescope

Small Aperture Telescopes

- >60,000 detectors
- 1x 6-m large aperture telescope
- 3x 42-cm small aperture telescopes

SO telescope receivers

Large Aperture Telescope Receiver

Small Aperture Telescope

Zhu et al. 2020

Ali et al. 2020 ¹⁹

SO integration and testing

LATR at UPenn

SAT-MF1 at UCSD

SO integration and testing

Detector testing at Princeton and Cornell

SO site and telescope/platform status

SO site and telescope/platform status

SO site and telescope/platform status

Photo: Debra Kellner

CCAT-prime

Fred Young Sub-mm Telescope

Prime-Cam receiver

280 GHz MKID array

New detectors: Microwave kinetic inductance detectors (MKIDs) → Allows for >100,000 detectors in the Prime-Cam receiver.

Better telescope: same as SO LAT but **better mirror surface accuracy** for high frequency observations. Observing at a superior 5,600-m site.

Parshley et al. 2018 Stacey et al. 2018 Unique instrument: 1.8-m diameter, 7-module receiver under construction. High frequency broadband channels & spectrometers.

Vavagiakis et al. 2018 Choi et al. 2020 Duell et al. 2020 Choi et al. 2021

26

Conclusion

- State-of-the-art cosmology from Planck.
- Existing data in hand (e.g., ACT) will soon improve on constraining cosmological parameters beyond Planck.
- With rapid progress in mm and sub-mm instrumentation, Simons Observatory (and CCAT-prime) will soon enable next generation cosmological studies of the dark universe.