Status of the LUX-ZEPLIN Dark Matter Experiment

Blois2022 Jim Dobson* for the LZ Collaboration

* STFC Ernest Rutherford Fellow, University College London

Greetings Blois, from your twin Lewes!

View of Lewes castle, South Coast of England

Outside my front door :-)

Direct detection of Dark Matter

Standard Halo Model

- Isothermal sphere of DM, $\rho \propto r^{-2}$
- Local density $\rho_0 \sim 0.3$ GeV/cm3
- Maxwellian (truncated) velocity distribution, f(v)
- Characteristic velocity $v_0=220$ km/s \rightarrow non-relativistic!

Direct detection of Dark Matter

Liquid Xenon Time Projection Chambers

Liquid Xenon Time Projection Chambers

Leading technology above a -few GeV

ZEPLIN-III

12 kg (7 kg)

2008

 10^{-40}

Spin Independent Cross Section (cm²)

62 kg (34 kg)

2013

20

LUX

250 kg (100 kg)

2016

Liquid Xe

Liquid Ar

PANDAX-II

2017

XENON1T

2,000 kg (1,042 kg) 2018

LUX-ZEPLIN

Also XENON-NT & PandaX-4T

2022-25

 10^{-41} Cryogenic **Inorganic Crystal** 10-42 Superheated fluid 10⁻⁴³ 10^{-44} 10⁻⁴⁵ LŪX LUX 10⁻⁴⁶ 10^{-47} 10^{-48} 2005 2010 2015 2020 2000 Year

Leading technology above a -few GeV

ZEPLIN-III

12 kg (7 kg)

2008

62 kg (34 kg)

2013

LUX

250 kg (100 kg)

2016

PANDAX-II

580 kg (362 kg)

2017

XENON1T

2,000 kg (1,042 kg) 2018

Jim Dobson – Blois2022

Also XENON-NT & PandaX-4T

5

The LUX-ZEPLIN Detector

Active veto system

WIMP Sensitivity full exposure

1000 live-days with 5.6 tonne fiducial volume

WIMP Sensitivity full exposure

1000 live-days with 5.6 tonne fiducial volume

Backgrounds, backgrounds, backgrounds

1) Ultra-radio pure materials and construction

3) Run until background limited

Radiopurity is key:

- → Xe purification with chromatography
- → Extensive radioassay campaign > 1000 assays
- → Strict cleanliness controls

See Eur. Phys. J.C 80 (2020) 11

LUX-ZEPLIN Construction - a few highlights

2018

Bottom PMT array after assembly at Brown University

HV grids production at SLAC, see <u>Nucl.Instrum.Meth.A</u> <u>1031 (2022) 165955</u> 2019

LUX-ZEPLIN Construction - a few highlights

Completed outer detector tank at Reynolds Polymer Technology - USCB

Offsite Kr removal of 10 tonnes of LXe at SLAC

TPC Assembly at SURF surface laboratory

2019

Mating of the extraction region to central TPC

Fully assembled TPC at SURF surface lab

Dust and Rn exposure control critical \rightarrow assembly in Rn-reduced surface lab cleanroom

2019

Moving to the Davis Campus

202 I

TPC inside inner cryostat vessel (ICV) being transported underground

2021

ICV being lowered into the outer vessel inside the water tank

Fully assembled 1 mile UG in Davis Campus

2021

Fully assembled outer detector - ready for water fill and operations

Fully assembled 1 mile UG in Davis Campus

2021

Fully assembled outer detector - ready fo

Commissioning complete -

how is the detector performing?

All detector systems operational

Mapping TPC response with calibrations

Reconstructing the TPC wall using injected ^{83m}Kr source:

Detector response to Deuterium-deuterium neutrons and injection ²²⁰Rn electron recoils:

Uniform well-behaved drift field: average ~190 V/cm

Light and Charge collection

Xe microphysics \rightarrow light and charge signals are anti-correlated:

$$E = W \cdot (rac{S1_c}{g1} + rac{S2_c}{g2})$$

Where:

g1 = photon detection efficiency

g2 = electron gain phd/e-

W = work function = 13.5 eV/quanta

Light and Charge collection

Mono-energetic sources: source tubes + injected + activation products.

* Likely to change with full treatment of systematics/improved calibrations

Outer detector performance

Background studies underway

²²²Rn measurements from alpha-counting

Gamma spectroscopy - in this case fitting inner region of detector above WIMP ROI

In-situ measurements will constrain backgrounds in WIMP region of interest

Not just WIMP physics

Non-WIMP DM candidates: Mirror dark matter, ALPs, hidden photons

Astrophysical neutrinos: solar-pp, supernova, ⁸B CEvNS

Rare decays: $0\nu\beta\beta$ of ¹²⁴Xe and 2ν ECEC on ¹²⁴Xe

Not just WIMP physics

Non-WIMP DM candidates: Mirror dark matter, ALPs, hidden photons

Astrophysical neutrinos: solar-pp. supernova. ⁸B CEvNS

In summary:

- LZ construction complete
- TPC, Skin and Outer Detector systems online
- Detector performing well
- Physics data taking now
- Watch this space!

LZ: 35 Institutions, 250 scientists, engineers, and technical staff

U.S. Department of Energy Office of Science

Thanks to our sponsors and 35 participating institutions!

Backups

Xenon circulation system

Circulation @ 500 slpm \rightarrow I turnover/2.4d

Purification using hot zirconium getter \rightarrow electronegative species < 0.1 ppb

Time

Xe Circulation Compressors

Jim Dobson – Blois2022

demonstrated in

testing

Background expectations

5.6 ton fiducial, 1000 live-days ~1.5 - 6.5 keV, single scatters, no coincident veto

Background Source	ERs	NRs
Detector Components	9	0.07
Dispersed Radionuclides — Rn, Kr, Ar	819	—
Laboratory and Cosmogenics	5	0.06
Surface Contamination and Dust	40	0.39
Physics Backgrounds — 2β decay, neutrinos*	322	0.51

Total (after 99.5% discrimination and 50% NR efficiency)6.49

Background expectations

Spin-dependent WIMP sensitivity

AmLi sims/data calibration spectrum

