

Sub-GeV Dark Matter Searches with EDELWEISS: New results

[arXiv:220303993]

Direct DM detection with EDELWEISS

Edelweiss sub-GeV program

Sub-GeV searches → background limited!

Goals:

- \rightarrow particle ID down to 1 GeV/c² and below,
- → improvement of resolutions down to

 σ_{phonon} = 10 eV (for thresholds) and σ_{ion} = 20 eV (for discrimination at LV).

- \rightarrow reach cross sections down to 10^{-43} cm².
- → reduce background.

How?

- → Reduce detector mass
 - **EDELWEISS-Surf** [PRD 99 082013 (2019)]
 - 33 g Ge bolometer.
- \rightarrow Apply HV to amplify signals

Electron-DM results [PRL 125, 141401 (2020)]

78 V applied onto 33 g Ge bolometer.

→ Probing bkg using TES

Migdal with NbSi TES [<u>arXiv:2203.03993</u> (2022)]

200g Ge bolometer operated at 66V

EDELWEISS experiment

EDELWEISS-III setup at LSM

- \rightarrow LSM : deepest site in Europe, 4800 m.w.e, 5 μ /m²/day
- \rightarrow Active μ -veto (>98% coverage)
- → Clean room + deradonized air
- → PE and lead shielding
- \rightarrow Selection of radiopure materials
- → Operated 20mK
- \rightarrow [arXiv:1706.01070]

detector chamber

internal PE shield at 1 K

internal lead shield at 1 K

FET boxes at 100 K

Bolometer boxes at 300 K

EDELWEISS NbSi TES (NbSi209)

- \rightarrow 200g Ge bolometer
- → heat signal: NbSi Transistor Edge Sensor (TES) lithographed on top surface,
- → ionization signal: Al electrodes lithographed on top and bottom surfaces

Neganov-Luke-Trofimov (NTL) amplification

What is NTL?

$$E_{heat} = E_{recoil} + E_{Luke} = E_{recoil} + N_p \Delta V$$

$$E_{heat} = E_{recoil}(1 + \frac{\Delta V}{\epsilon})$$
 particle-ID dependent

Why use it?

→ Heat resolution gain by a factor (1+V/3) for e⁻ signals

Limits of HV:

→Loss of discrimination between ER and NR bands

100V

Calibration

- → Calibration from K, L, M, ⁷¹Ge decay line,
- → Heat baseline resolution 100 eV on total energy, i.e. 4 eVee for ER at 66V,
- → Ideal resolution for Migdal DM search!

Migdal effect

What is the Migdal effect?

→interaction DM-nucleus which induces both a NR *and* the ionization of a Ge atom → **electronic** signal with NR

Why use it?

→ for low-mass DM particles, NR induced
 energy ~1 eV against ~100 eV for Migdal e⁻
 yield

In Germanium:

- \rightarrow Ideal target of search for NbSi209 with σ_{heat} = 4 eVee
- \rightarrow Calculations (lbe et al arxiv:1707.07258) reliable for n = 3 shell-e⁻ (only shell considered here)
- → Migdal electron energy > 35 eV for n=3

Analysis

Efficiency and selection

Dataset divided in half:

- → non-blinded dataset to set analysis cuts
- → **blinded** dataset to perform DM search

- → Inject actual 10.37 keV events, scaled to desired energy, at random times and low rate,
- → **Process** the new datastream as real data

 \rightarrow Require \mathbf{E}_{ion} > 400 eV_{ee} signal on electrodes (green) to reduce our bkg compared to σ_{ion} = 210 eV. Aggressive, but well-understood cut.

Limit extraction

- → All calculations of Migdal are corrected for **Earth shielding effect** (ESE)
- → Choice of regions of interest (Rols) to maximize S/N ratio on non-blinded sample,
- → Use chosen Rols, 90% C.L. Poisson upper limit on blinded sample,
- \rightarrow Left: Signal drifts towards high energies with DM mass,
- \rightarrow Right: Signal shifts down for high cross section due to attenuation of DM flux through rock.

New limit

- → 90% C.L. upper limit on cross-section for Spin-Independent interaction through Migdal effect,
- → limited in mass sensitivity because of ESE,
- → Strong ESE effects for M<50 MeV/c²,
- → MC toys used to probe statistical stability of the results.

New limit

- → Same red contour as previously,
- → New region of parameter space constrained : $\sigma \approx 10^{-29}$ cm² and M \in [32 ; 100] MeV/c²,
- → Several orders of magnitude of improvement compared to EDW-Surf Migdal search (blue contour)
 - reduction of bkg
 - 4 eVee resolution with TES sensor design
- → Limited by background!

Rate and shape of HO spectrum with NbSi sensor

- → **Heat-Only** (HO) background : events not associated to charge creation.
- → **Top** : NbSi2O9 LV and HV data
- \rightarrow Compatibility of HV/LV spectra for E_{ph} > 0.8 keV
- → Mostly HO events!
- → **Bottom** : LV/HV ratio of histograms
- → Extract nbr of events producing charges < 0.04%.

Prospects: CRYOSEL

CRYOSEL

- \rightarrow 40g Ge detector, $\sigma_{\rm phonon}$ = 20 eV, 200 V bias,
- → SSED "Superconducting Single Electron Device", detection of athermal phonons from individual charges → discrimination of HO events,
- → Expect many orders of magnitude **improvement** compared to present-day sensitivity.

Conclusion

Takeaway messages

- → EDELWEISS collaboration developed new **NbSi TES**-equipped detectors as part of its Sub-GeV program,
- \rightarrow It allowed to constrain a **new region** of parameter space : $\sigma \simeq 10^{-29} \, \text{cm}^2$ and $M \in [32 ; 100] \, \text{MeV/c}^2$,
- → Several orders of magnitude of **improvement** compared to EDW-Surf Migdal search (blue contour),
- → Established an **upper limit** on number of events producing charges of 0.04% in data at low energies,
- → Exciting prospects with new **CRYOSEL** detectors.

Thank you!