Light dark matter vis-a-vis resonance and its possible probes
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Cvidence for Dark Mat’ter
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Some known facts

Cold:
Pressureless:
Dark :

Collisionless:

Abundance:

I

Dark
energy
68.3%

Atoms 4.9%
moves much slower than ¢

gravitational attractive, clusters Dark matter 26.8%
no/weakly electromagnetic interaction

no/weakly self-interaction or interaction with
baryons

amount of dark matter today known



Some unknown facts

What is DM?2 What is its nature?

Cold mmm—
Pressureloss mummm—(
Bark transparent mmm—mlp
Collsionics: mmmmmmmmmllp-

Although still behaves
like CDM on large scales

How cold it is?

Cluster on all scales?

Non-gravitational interaction?

How small self-interaction

/4

WDM

Milicharged DM

SIDM

Small scale behaviour: still weakly constrained
and small scale challenges



Small scale crisis

Missing Satellites

Discrepancy between the # of satellites
predicted by ACDM
and the # observed satellites

Too big to fail

T T

M,=1.3x10"M,
407 < 300 kpe: 12 failures 4

N-body simulations (CDM)
show cuspy density profiles
(NFW), whereas observations -
indicate a cored structure.
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Particle nature of dark matter

zeV aeV feV peV neV peV meV eV

QCD Axion

keV MeV GeV TeV PeV  30M,

WIMPs
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Ultralight Dark Matter
—>
Pre-Inflationary Axion

-—>
Post-Inflationary Axion

o
-
“ 7 Hidden Sector Dark Matter Black Holes

Hidden Thermal Relics / WIMPless DM -

Asymmetric DM

Freeze-In DM

>
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5



Thermal OR non-thermal? 6’%

Different thermal histories of DM
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WIMPs. ..

WIMP paradigm: 6,,,(v/c) =1 pb = Q,,,=0.12

Electroweak mediators = Lee — Weinberg window
2 m2
G% mg,, form_<<m,,
o(v/c)

1/m?2  formy>>my,

It modeled decades of direct
search experiment designs
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Maybe lighter dark sectors?



Status of Light thermal DM ’I///é
9 =

Freeze-out scenario with light dark matter requires a light mediator to explain
the relic density, or dark matter is overproduced.

1072, 102
] ]
1024 o . .
1025 ’ e Light DM below 10 GeV is excluded by CMB
1072 / . e . . .
— =1 > if DM annihilation into SM is s-wave.
100 p o 1077 %4
5 1027} v 5 1022p e The constraint is much weaker if other
2 2 P
§ 10 § 107 partial waves are dominant in the
10730 o . .
29} / / .
Rl XX e*e” s-wave Annihilation 1091) XX - yy s-wave Annihilation annihilation cross-section
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Liu et. al, 2016



Let’s take an example....



The model

New particles

scalar 1 : x, Z» odd - DM
scalar 2 : ¢', charge neutral

1
2=$SM+E( X)Z__Xz

V(®,H) = gy ®H|* +

)(

+ (a )’ —

ZIHIZJ(2

“‘bz 2

@x—

A
%Mmz +u§<1> +

A,
El
Aoy

4

2
Pagey
2

After the electroweak symmetry breaking

H=(0,vy+h)T /2, vy ~ 246 GeV
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Uy,
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Interactions
12
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Wy,

Decay of the mediator Z
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If my > 2m,, mediator decays almost entirely into DM



we focus on

the Resonant annihilation region

Mediator is a little heavier than twice of DM mass



Parameters
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Self-interactions

Why self-interaction?

e Stronger self-scattering needed for (dwarf-sized) halos

A solution to small-scale structure problem

Dark Matter Density (Mo /kpc®)

10°

.. NFW profile Effectively
....... g.usp Collisional | cpp
el T >1 collision/: <1 collision/.
e, particle | particle
., € ] >

Core
SIDM profile
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Direct detection of SIDM, S. Tulin

’:]-)7511\/[ ~ 0.5 — 10 cm?/g at dwarf scales of DM velocity ~ 10 km/s

O. D. Elbert et al. 2016, K. Bondarenko 2016,....

o Weaker self-scattering favoured by cluster merging/halo profiles etc
"’(1737511\/[ ~ 0.2 — 1 cm?/g at cluster scales of DM velocity ~ 1000 km/s
O. D. Elbert et al. 2016, K. Bondarenko 2016, ....

A velocity-dependence in DM self-scattering?

Possibilities : a light mediator
Spergel & Steinhardt 1999, Bringmann, et al. 2016

OR..



SIDM via a resonance [XC, C. Garcia-Cely, H. Murayama, 1810.04709]

47 S

vaézw<<l

An enhancement
&
a velocity-dependence

I(v)?/4

g = 0

t/u - channel

. B (E@) — B(vr)’ +T(0)*/4

.
E(v) = 5%”112 and

L — partial wave

I'(w) = m}‘ﬂvuﬂ y — couplings

VR — near resonance
2Jp + 1

B (2Jpm + 1)2

Xiaoyong Chu, Humboldt Kolleg 2019



Viable parameter region

Broad resonance

my = 0(10 GeV), vy «correlated _, Vg O arbitrary ’

my; <10 GeV, vg ~ 100 km/s, gy/m, ~ 0.1 citte
1 o< my
Narrow resonance
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Uy,

Relic density 19 Z
=
NI
DM T\
e Dark matter annihilates into SM particles through med
s-channel resonance from ¢ mediation.
DM SM

e Enhanced cross-section keeps the dark sector coupling down in order to match with the observed relic den-

sity

2 r fe
32C2 [T (¢ — SM)]mi_»s

fc ~
ov(xx = fom) mi (v2 — vl%)2 + 16ri(s)/mfb

Fo(s) =IT (@ = xx) + 2 T (@ = fon)lpe s

fsm

{ov(xx — fSM)>vO ~ fooo dvov (xx — fsm)f(v, vo)
s =m3(1+ v?/4)/(1 + vi/8)
v’?\, =4(mgy/my —2),v = ri(s)/mi

For DM mass below 10 GeV, observed relic density fixes the mixing angle in the range

] 1079 <sind <1073
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CMB puts a bound on electromagnetic energy injection into primordial plasma

An upper limit on fog(m,){ov), /m,

/ / Slayter et al. 2016

efficiency DM velocity
p— at recombination epoch




The velocity is estimated to be

vpu = 2 X 107(Z,/1 eV)(1 GeV/m,)(10™4/x,)"?

T,=0235eV Xeg = Tralm,

In the early kinematical decoupling scenario, Ti; ~ O(Tfeeze-out)

Since vpy < Vg # only s-wave component contributes to annihilation
at recombination

But at freeze-out velocity is not so suppressed # so higher momenta also

contribute to relic density



e We estimate the efficiency fuff (m,) taking only leptonic final states into account

® PLANCK » fur(m) (ov), /m, < 4.1 X107 cm3/s/GeV at 95% C.L.

A4

Mediator mass above ~ 4 GeV is excluded

But... 500MeV < my, < 4 GeV

No robust way to calculate fragmentation
function for hadronic final states



Another limit from CMB "///
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e Adding new particles with mass close to the neutrino decoupling temperature Tp ~ 2 MeV to the dark
sector affects expansion rate of the Universe at the recombination epoch

o CMB set a lower limit on the light mediator not to alter the effective # of relativistic d.o.f (ANeg)

e Assuming the instantaneous neutrino decoupling and no heating of the neutrinos from electrons and

positrons
4 —4/3
Neff:?’{l+m[5;{(TD)+S¢(TD)]} s 5(Tp) = h(TD) 5 D,
h(Tp) = (15x)/(4n*) [ dy (4y* = DV/¥2=1/(e" — 1) x; = my/Tp

Neff - 2.99 + 0.17

PLANCK excludes mediator mass below 11 MeV at 95% C.L



Likelihood
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How to probe this model ?77?
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Collider searches

= 26 <
TN

the light mediator can be probed in the searches for
invisible decays of rare mesons
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1072

1072

T

my (GeV)

100

Present
Future

10!

o Current limits : Belle, BaBar, E949, NA62, and KOTO
at 90% C.L

o Future projections : Belle Il and KLEVER
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Direct detection §2 Z
.S
NS
f;mﬁ, Cory Chyy :
N N)= in 6 6—=
og(yN — ¥N) pre Yoy sin = + cos m?

100 fe
;gm’“ o Current limits : CDEX, DarkSide-50 and XENON1T(M)
S at 90% C.L
g
10-50 o Future projections : NEWS-G, SuperCDMS, CYGNUS,
and DARWIN
107 5= T R 10!
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Indirect detection

Indirect detection can constrain DM annihilation into electromagnetically charged particles

For our analysis

vbMm at present

VR ~ 1073 ~

epoch
DM annihilation cross-section at present epoch has the maximal
contribution from the higher partial waves

ll\\\\§
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Cosmic ray observations

® DM annihilation into leptons contributes to cosmic ray flux

e Signal flux

2

—> (DM densit
(—' I>Uncertainties

(jvﬁﬂ Propagation B [Boudaud et al. 2017,
Kappl et al. 2015]

Limits available from Voyager I, being the only

cosmic ray detector

10—21
nﬂ 10-23
£
&
2.,10-25
LS . Voyager
>
o)

10727

-29
10 1072

located outside the heliosphere
Pom(7e) = 0.25 £ 0.11 GeV/cm? [Read et. al 2014]
Vo(re) = 300 km/s [Lacroix et. al 2020]

e Annihilation considered only into lepton pairs
e Grey area excluded by Voyager | at 90% C.L.

Several parameter sets survive within
" 250 MeV < m, <2 GeV

10! 100 |
m, (GeV)




gamma-ray flux from the dark matter annihilation at the galactic center

ey, = 400 km/s
jl X [JAKZ dQJI.O.i dSpIZ)M]
V\___/'

J-factor
COMPTEL (C t
Produced photons typically have MeV energies = experimentally difficult to probe <: (Current)
GECCO, COSI (Future)
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107 ee U e DM annihilation cross section into SM lepton pairs
® Grey area excluded by COMPTEL at 90% C.L.
- 1072 ® GECCO projection in green
2 e
S 10
3 ERMETES Near future observation almost covers
T surviving parameter region for
250 MeV <m, <2 GeV
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the
dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the

dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.

e The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass
range of 10 MeV < my < 4 GeV.
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the

dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.

e The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass
range of 10 MeV < my < 4 GeV.

e There are strong constraints from collider searches due to the extensive search for rare K-meson decays.
Moreover, future K-meson experiments can explore most of the parameter sets with mg < 100 MeV
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the

dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.

e The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass
range of 10 MeV < my < 4 GeV.

e There are strong constraints from collider searches due to the extensive search for rare K-meson decays.
Moreover, future K-meson experiments can explore most of the parameter sets with mg < 100 MeV

o A lighter dark matter region, my, < 300MeV, is excluded by the indirect dark matter detection using
cosmic-ray and gamma-ray observations, for the signal strength is boosted by the s-channel resonance.
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e We consider a minimal thermal light DM model that resolves the core-cusp problem of the universe if the
dark matter self-scattering occurs via the Breit-Wigner resonance caused by exchanging the mediator parti-
cle in the s-channel.

e The model is compatible with self-interaction, relic density and CMB constraints in the dark matter mass
range of 10 MeV < my < 4 GeV.

e There are strong constraints from collider searches due to the extensive search for rare K-meson decays.
Moreover, future K-meson experiments can explore most of the parameter sets with mg < 100 MeV

o A lighter dark matter region, my, < 300MeV, is excluded by the indirect dark matter detection using
cosmic-ray and gamma-ray observations, for the signal strength is boosted by the s-channel resonance.

e Only the parameter sets with 300 MeV < m, < 2GeV avoid the severe constraints, although upcoming
experiments in the near future is expected to probe this region.
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