Cosmological results from 20 years of the Sloan Digital Sky Survey

Andreu Font-Ribera

Institut de Fisica d'Altes Energies (IFAE, Barcelona) On behalf of the eBOSS Collaboration

Mapping the Universe with SDSS

Andreu Font-Ribera - Cosmology from 20 years of SDSS

Rencontres de Blois, May 24th 2022

- Introduction to Baryon Acoustic Oscillations
- BOSS (2009-2014) and eBOSS (eBOSS, 2014-2019)
- Cosmology from 20 years of SDSS
 - Curvature, dark energy and neutrino masses
 - H_0 tension

Oscillations clearly seen in the CMB temperature power spectrum

Sound horizon at recombination (from Planck): $r_d = 147.6 \pm 0.3 \text{ Mpc}$

We measure BAO peak in the transverse direction in SDSS : $\Delta \theta_{BAO}$

We measure BAO peak along the line of sight in SDSS : Δv_{BAO}

$$\Delta \theta_{BAO} = \frac{r_d}{1+z} \frac{1}{D_A(z)} \qquad \Delta v_{BAO} = \frac{r_d}{1+z} H(z)$$

- Introduction to Baryon Acoustic Oscillations
- BOSS (2009-2014) and eBOSS (eBOSS, 2014-2019)
- Cosmology from 20 years of SDSS
 - Curvature, dark energy and neutrino masses
 - H_0 tension

BAO from SDSS

BAO from SDSS

Baryon Oscillation Spectroscopic Survey (BOSS, SDSS III, 2009-2014) Extended BOSS (eBOSS, SDSS IV, 2014-2019)

BAO from SDSS

BAO from BOSS/eBOSS provide accurate distances over wide redshift range

RSD from SDSS

RSD from BOSS/eBOSS provide accurate measurements of growth of structure

Andreu Font-Ribera - Cosmology from 20 years of SDSS

- Introduction to Baryon Acoustic Oscillations
- BOSS (2009-2014) and eBOSS (eBOSS, 2014-2019)
- Cosmology from 20 years of SDSS
 - Curvature, dark energy and neutrino masses
 - H_0 tension

"The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory"

Interpretation of 23-paper arXiv submission from July 20, 2020

Collaboration paper co-led by (left to right): Eva-Maria Mueller (Oxford), Kyle Dawson (Utah), Andreu Font-Ribera (IFAE), Zheng Zheng (Utah) and Anze Slosar (BNL)

- SDSS fully consistent with Planck CMB, Pantheon SNe and DES 3x2
- Clear H_0 tension with SHOES distance ladder (more latter)

DES and SDSS results have BBN prior and weak prior on $n_{\mbox{\scriptsize s}}$

- Introduction to Baryon Acoustic Oscillations
- BOSS (2009-2014) and eBOSS (eBOSS, 2014-2019)
- Cosmology from 20 years of SDSS
 - Extensions: curvature, dark energy and neutrino masses
 - H_0 tension

BAO + CMB has a clear preference for a flat Universe

SDSS measures galaxy and quasar BAO at z<=1.5 (BAO gal) along with Lyman-α forest BAO at z=2.33

Combined they allow precise constraints on curvature and dark energy

Massive neutrinos

BAO breaks degeneracy with matter density in CMB

- Introduction to Baryon Acoustic Oscillations
- BOSS (2009-2014) and eBOSS (eBOSS, 2014-2019)
- Cosmology from 20 years of SDSS
 - Curvature, dark energy and neutrino masses
 - H_0 tension

How fast is the Universe currently expanding?

One of the key cosmological parameters has been historically controversial

Systematics on either side? Problems with flat ΛCDM ?

Systematics on either side? Problems with flat ΛCDM ?

BAO + LCDM constraint Ω_m and H₀ r_d (sound horizon, size of ruler)

BBN prior on Ω_b can break degeneracy and measure H_0 from BAO

BAO and the H_0 tension

BAO constraints Ω_m and product $H_0 r_d$ (sound horizon, size of ruler)

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

- BOSS/eBOSS measured BAO at <1% accuracy using galaxies
- 1.4% measurement at z=2.3 using quasars and Ly- α forest
- Independent (8- σ) detection of Dark Energy
- Order-of-magnitude better constraint on spatial curvature
- Tightest constraints on neutrino mass (CMB+BAO)
- \bullet Alternative H_0 measurements consistent with CMB ones

Extra slides

