

## Recent searches for new phenomena with the ATLAS detector

## XI International Conference on New Frontiers in Physics

Kolymbari, Crete, Greece, August 30 - September 11, 2022

**Eirik Gramstad** 

September 1, 2022

### **Table of contents**

#### **1** Overview of the Analyses

- Resonant WZ search
- Search for charged-lepton-flavor-violating decay
- Searches for Higgs and Z boson decays into a vector quarkonium state and a photon

#### 2 Event Selections and Background Estimation

- Application of Machine Learning
- Data-driven background estimation

#### 3 Results

## ATLAS - A broad search strategy!

| Talk                                                                                                | Speaker                        |
|-----------------------------------------------------------------------------------------------------|--------------------------------|
| Searches for dark matter with the ATLAS detector                                                    | A. W. Zeng                     |
| Searches for rare top quark production and decay processes with the ATLAS experiment                | C. Wang                        |
| Searches for new phenomena in final states with 3rd generation quarks using the                     | Meng-Ju Tsai                   |
| ATLAS detector                                                                                      |                                |
| Searches for additional Higgs bosons in ATLAS                                                       | N. Cavalli                     |
| ATLAS searches for supersymmetry with prompt particles                                              | S. Huang                       |
| ATLAS searches for supersymmetry with long-lived particles                                          | K.K. Gan                       |
| ATLAS results on exotic hadronic resonances                                                         | <ol> <li>Yeletskikh</li> </ol> |
| Searches for <b>BSM physics using challenging and long-lived signatures</b> with the ATLAS detector | M. Didenko                     |

| Poster                                                                                                                                                                            | Presenter |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Search for new resonances decaying into a Higgs boson and a generic new boson X in                                                                                                | E. Rossi  |
| the XH -> qqbb final state with the ATLAS detector                                                                                                                                |           |
| ATLAS searches for Higgsinos with R-parity violating couplings in events with leptons                                                                                             | O.A. Ducu |
| Search for direct production of electroweak gauginos in events with two same-sign or                                                                                              | S. Huang  |
| three leptons in 13 TeV pp collision data with the ATLAS detector                                                                                                                 |           |
| Search for new physics in multi-body invariant masses in dijet events with an isolated                                                                                            | W. Islam  |
| lepton in pp collisions at sqrt(s)=13 TeV with the ATLAS detector                                                                                                                 |           |
| Search for single production of a <b>vector-like</b> <i>T</i> <b>quark</b> decaying into a Higgs boson and top<br>quark with fully hadronic final states using the ATLAS detector | J.H. Foo  |

#### In addition to **all** the interesting

#### Standard Model precision measurements

Eirik Gramstad Recent searches for new phenomena with the ATLAS detector 1st September 2022 2/22

### **Overview**

| Search                 | Paper | Previous      | Motivation                    |
|------------------------|-------|---------------|-------------------------------|
|                        |       | Results       |                               |
| Search for resonant    | arXiv | ATLAS@8TeV,   | Heavy Vetor                   |
| WZ in leptonic final   |       | CMS@8TeV,     | Triplets $(W')$ ,             |
| states                 |       | ATLAS@13TeV   | extended Higgs                |
|                        |       |               | Sector                        |
| Search for charged-    | arXiv | LEP[1, 2, 3], | deviations from               |
| lepton-flavor-         |       | ATLAS@8TeV    | SM expectations               |
| violating decay        |       |               | sensitive to new              |
| $Z  ightarrow e \mu$   |       |               | physics                       |
| Searches for exclus-   | arXiv | ATLAS@8TeV,   | Higgs Yukawa                  |
| ive Higgs and $Z$ bo-  |       | ATLAS@13TeV,  | couplings (to 1 <sup>st</sup> |
| son decays into a vec- |       | CMS@8TeV,     | and 2 <sup>nd</sup> gen.)     |
| tor quarkonium state   |       | CMS@13TeV     |                               |
| and a photon           |       |               |                               |

## Search for resonant *WZ* in leptonic final states [arXiv:2207.03925]



- search for new heavy vector triplet (HVT) resonances; W'
  - couples to the Higgs field (g<sub>H</sub>) and longitudinally polarized SM gauge bosons (g<sub>V</sub>)
  - no coupling of the heavy vector resonance to fermions (g<sub>F</sub>)



- investigating tree-level couplings of charged Higgs bosons to vector bosons within the Georgi-Machacek (GM) model
  - extends the SM Higgs sector by including one real and one complex triplet

## Search for charged-lepton-flavor-violating decay $Z \rightarrow e \mu$ [arXiv:2204.10783]

- lepton-flavour violation has been observed in the neutrino sector
- rate of charged-lepton-flavor violation is expected to be vanishingly small
- $\blacksquare$  this analysis performs a search for  $Z \to e \mu$  using the full LHC Run-2 data
  - indirect searches for  $\mu \rightarrow e^+e^-e^+$  or  $\mu \rightarrow e\gamma$  imply BR( $Z \rightarrow e\mu$ )< 5 × 10<sup>-13</sup>
    - these interpretations can be evaded
  - direct searches for two-body decays into eµ remains a vital part of the charged-lepton-flavor violation search



## Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and

- a photon [arXiv:2208.03122]
  - a complete observation of higgs boson couplings to third generation charged fermions
  - study of couplings of the 1<sup>st</sup> and 2<sup>nd</sup> generation quarks through  $H \rightarrow q\bar{q}$  decays suffer from large multi-jet backgrounds
  - radiative decays of the Higgs boson into a vector meson state (Q) decaying to µ<sup>+</sup>µ<sup>-</sup>

■ 
$$\mathcal{B}(H \to \Upsilon(1S, 2S, 3S)\gamma) \sim 10^{-9} - 10^{-8}$$

- $\blacksquare \ \mathcal{B}(H \to \psi(2S)\gamma) \sim 10^{-6}$
- distinct experimental signature



deviations of the quark Yukawa couplings from the SM expectations can lead to significant enhancements for the BR of radiative decays

## **Machine Learning in Event Selection I**

the search for resonant WZ production in the VBF process uses an Artificial Neural Network (ANN) to select signal events



- binary classification (VBF signal process or background)
- trained on simulated  $H_5^{\pm}$  events as signal against SM WZ production
- training sample reduced by requiring ≥ 2 jets with m<sub>jj</sub> > 100 GeV

| Training variable                | Definition                                                                    |
|----------------------------------|-------------------------------------------------------------------------------|
| $m_{ii}$                         | Invariant mass of the two leading- $p_{\rm T}$ jets                           |
| $\Delta \tilde{\phi}_{ii}$       | Difference in $\phi$ of the two leading- $p_{\rm T}$ jets                     |
| $\eta_W, \tilde{\eta}_Z$         | Pseudorapidities of the reconstructed gauge bosons                            |
| $\eta_{i1}$                      | Leading- $p_{\rm T}$ jet pseudorapidity                                       |
| $\zeta_{\text{Lep}}$             | Event centrality                                                              |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | Missing transverse momentum                                                   |
| $H_{\mathrm{T}}$                 | Scalar $p_{\rm T}$ sum of the $VBFjets$ and the leptons from the $W\!Z$ decay |

## Machine Learning in Event Selection I

- network with two hidden layers and 45 neurons each
- the features were chosen based on their impact in training:
  - the loss in the expected significance when adding or replacing features were evaluated for each set of variables until an optimal set was found
- all mass samples
   (0.2-1 TeV) of simulated H<sub>5</sub><sup>±</sup>
   events used in training





training applied to both  $H_5^{\pm}$  and HVT Model samples

## Machine Learning in Event Selection II

- a Boosted Decision Tree (BDT) is used in the  $Z \rightarrow e\mu$  search
- trained on simulated signal and background in the  $85 < m_{\mu e} < 95$  GeV mass window
- the chosen threshold value of the BDT score maximizes  $s/\sqrt{b}$
- same procedure used to define same-flavor control regions (CR)
- **BDT** trained on selected  $e\mu$  events with  $m_{\mu e} \pm 20$  GeV around the Z-mass



3000







## **Classical Event Selection**

a cut and count procedure is used for the event selection in the the search for Higgs and Z boson decays into a vector quarkonium (Q) state and a photon



|                                       | Common Selectio                                 | n                                                                     |
|---------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|
| two muons                             | with $p_{ m T}$ $>$ 18/3 GeV, $ \eta $ $<$ 2.5  | forms a $Q \rightarrow u^{+}u^{-} + \chi$ candidate                   |
| one photor                            | n with $p_{ m T}$ $>$ 35 GeV, $ \eta $ $<$ 2.37 | $\int 10^{1113} a \mathcal{Q} \rightarrow \mu \mu + \gamma candidate$ |
|                                       | $\Delta arphi(\mathcal{Q}, m{\gamma}) > \pi/2$  |                                                                       |
|                                       | $J/\psi - \psi(2S)$ candidates                  | $\Upsilon$ (1S,2S,3S)candidates                                       |
|                                       | $2.4 < m_{\mu^+\mu^-} < 4.3~{ m GeV}$           | $8.0 < m_{\mu^+\mu^-} < 12.0~{ m GeV}$                                |
| $m_{\mu^+\mu^-\gamma} \leq$ 91 GeV    | ${oldsymbol  ho}_{T}^{\mu^+\mu^-} >$ 40.0 GeV   | $ ho_{T}^{\mu^+\mu^-}>$ 34.0 GeV                                      |
| $m_{\mu^+\mu^-\gamma} \geq$ 140 GeV   | ${oldsymbol  ho}_{T}^{\mu^+\mu^-} >$ 54.4 GeV   | $p_{T}^{\mu^+\mu^-} >$ 52.7 GeV                                       |
| 91 $> m_{\mu^+\mu^-\gamma} <$ 140 GeV | $p_{T}^{\mu^+\mu^-}$ threshold varies linearly  | between the above cuts                                                |
| barrel (B) category                   | -                                               | both muons $ \eta  <$ 1.05                                            |
| endcap (EC) category                  | -                                               | at least one muon $ \eta  \ge 1.05$                                   |

## **Background Estimations**



Exclusive background: Drell-Yan production of muons with a highly energetic photon

- shape of background estimated using simulations
- normalization determined from a fit to the data in the signal region

#### Inclusive backgrounds:

- 1 inclusive multi-jet or  $\gamma$ +jet involving production of Q states with subsequent decays to  $\mu^+\mu^-$
- 2 non-resonant dimuon pairs with the γ-candidate being a mis-identified jet
  - estimated using data



|                    | 95% CL <sub>s</sub> upper limits |                         |                              |          |                   |              |
|--------------------|----------------------------------|-------------------------|------------------------------|----------|-------------------|--------------|
| Branching fraction |                                  |                         |                              |          | $\sigma \times 2$ | В            |
| Decay              | Higgs bos                        | on [ 10 <sup>-4</sup> ] | Z boson [ 10 <sup>-6</sup> ] |          | Higgs boson [fb]  | Z boson [fb] |
| channel            | Expected                         | Observed                | Expected                     | Observed | Observed          | Observed     |
| $J/\psi \gamma$    | $1.9^{+0.8}_{-0.5}$              | 2.1                     | $0.6^{+0.3}_{-0.2}$          | 1.2      | 12                | 71           |
| $\psi(2S)\gamma$   | $8.5^{+3.8}_{-2.4}$              | 10.9                    | $2.9^{+1.3}_{-0.8}$          | 2.3      | 61                | 135          |

Eirik Gramstad

### **Results for resonant** *WZ* **prod.**



 2.5σ and 2.8σ local significance in the W' and H<sup>±</sup><sub>5</sub> models (1.7σ and 1.6σ global)

#### No significant excesses

Limits on the BR times cross-section as a function of W' and  $H_5^{\pm}$  have been set



VBF W/ 600 GeV m(WZ) [GeV]

WZ-QCI

V0.07+#

Recent searches for new phenomena with the ATLAS detector 1st September 2022

### **Results for** $Z \rightarrow e \mu$ **search**



no localized excess consistent with  $Z \rightarrow e\mu$  decay is observed

$$egin{aligned} & N_{Z 
ightarrow e \mu} = & N_{Z}^{avg}(A imes \epsilon)_{Z 
ightarrow e \mu} \ & imes \mathcal{B}(Z 
ightarrow e \mu) \end{aligned}$$

| Quantity                            | Value                         |
|-------------------------------------|-------------------------------|
| $A \times \varepsilon_{Z \to e\mu}$ | $(10.3 \pm 0.3)\%$            |
| $N_Z^{\mathrm{avg}}$                | $(7.87 \pm 0.19) \times 10^9$ |

The most stringent direct result yet reported!

$$\mathcal{B}(Z 
ightarrow m{e}\mu) <$$
 2.62  $imes$  10 $^{-7}$ 

### **Conclusions and Outlook**

- the ATLAS Experiment has a comprehensive set of searches for new phenomena exploiting the complete LHC Run-2 data set
- no significant evidences for any new physics yet reported
- LHC Run-3 has just started at an increased energy,
  - $\sqrt{s} = 13.6 \text{ TeV}$ 
    - a doubling of the current data set is expected in Run-3
    - several of the analysis presented here are limited by statistics
    - can expect improved limits (observations!?) in Run-3



## BACKUP

## **Background Estimations**

1) make 2) construct PDFs of the a Gener- relevant kinematic and ation isolation variables, Region parameterised to respect of "soft" the most important  $\mathcal{Q} \rightarrow$  correlations  $\mu^{+}\mu^{-}\gamma^{-}$  candidates 3) variables are drawn from different PDFs in a 4-stage procedure, where the PDFs used in each stage is based on the value from the previous stage



4) the nominal selection, are imposed on the pseudo-candidate events and used to construct templates for the  $m_{\mu^+\mu^-\gamma}$  distributions





the grey band is estimated by allowing the shape of the background to vary around the nominal shape controlled by three variations: 1)  $p_T^{\gamma}$ , 2)  $\Delta \varphi(Q, \gamma)$  and 3) an overall "tilt" of the  $m_{\mu^+\mu^-\gamma}$  distributions

## Results in $\Upsilon(1S,2S,3S) + \gamma$



upper limits represent an improvement by a factor of  $\sim$  2 relative to the previous results from ATLAS using  $\sim$  1/4 of the data

|                       | 95 % CEs upper minus |                         |                              |          |                   |              |
|-----------------------|----------------------|-------------------------|------------------------------|----------|-------------------|--------------|
|                       | Branching fraction   |                         |                              |          | $\sigma \times 2$ | В            |
| Decay                 | Higgs bose           | on [ 10 <sup>-4</sup> ] | Z boson [ 10 <sup>-6</sup> ] |          | Higgs boson [fb]  | Z boson [fb] |
| channel               | Expected             | Observed                | Expected                     | Observed | Observed          | Observed     |
| $\Upsilon(1S) \gamma$ | $2.8^{+1.3}_{-0.8}$  | 2.6                     | $1.5^{+0.6}_{-0.4}$          | 1.0      | 14                | 59           |
| $\Upsilon(2S)\gamma$  | $3.5^{+1.6}_{-1.0}$  | 4.4                     | $2.0^{+0.8}_{-0.6}$          | 1.2      | 24                | 71           |
| $\Upsilon(3S) \gamma$ | $3.1^{+1.4}_{-0.9}$  | 3.5                     | $1.9^{+0.8}_{-0.5}$          | 2.3      | 19                | 135          |

## **Machine Learning in Event Selection I**

the search for resonant WZ production in the VBF process uses an Artificial Neural Network (ANN) to select signal events



- binary classification (VBF signal process or background)
- implemented using Keras on top of TensorFlow
- trained on simulated  $H_5^{\pm}$  events as signal against SM WZ production

#### **Pre-selection**

#### Features

| $\geq$ 2 jets <sup>1</sup>      |  |  |  |
|---------------------------------|--|--|--|
| <i>m<sub>jj</sub></i> > 100 GeV |  |  |  |
| veto events with b-             |  |  |  |
| tagged jets                     |  |  |  |

| Training variable        | Definition                                                                        |
|--------------------------|-----------------------------------------------------------------------------------|
| m <sub>ij</sub>          | Invariant mass of the two leading- $p_T$ jets                                     |
| $\Delta \phi_{ii}$       | Difference in $\phi$ of the two leading- $p_T$ jets                               |
| $\eta_W, \tilde{\eta}_Z$ | Pseudorapidities of the reconstructed gauge bosons                                |
| $\eta_{j1}$              | Leading- $p_T$ jet pseudorapidity                                                 |
| $\zeta_{Lep}$            | Event centrality                                                                  |
| $E_{T}^{miss}$           | Missing transverse momentum                                                       |
| $H_{\mathrm{T}}$         | Scalar $p_{\rm T}$ sum of the $V\!B\!Fjets$ and the leptons from the $W\!Z$ decay |

 $^{1}$  with  $p_{T}$  > 30 GeV and  $|\eta|$  < 4.5, vetoing b-jets and removing jets likely to come from pileup

## Machine Learning in Event Selection I

- a 4-fold cross-validation used when optimizing the network
- training performed with 100 epochs and two hidden layers w/ 45 neurons each
- the features were chosen based on their impact in training:
  - the loss in the expected significance when adding or replacing features were evaluated for each set of variables until an optimal set was found





- all mass samples (0.2-1 TeV) of simulated H<sup>±</sup><sub>5</sub> events used in training
- training applied to both  $H_5^{\pm}$  and HVT Model samples

## Machine Learning in Event Selection II

- a Boosted Descision Tree (BDT) is used in the Z→eµ search
- trained on simulated signal and background in the 85 < m<sub>μe</sub> < 95 GeV mass window</li>
- the chosen threshold value of the BDT score maximizes s/√b
- same procedure used to define same-flavor control regions (CR)
   Pre-selection

one electron and one oppositely charged muon  $70 < m_{wa} < 110$  GeV

$$70 < m_{\mu e} < 110 \text{ G}$$

 $E_{\rm T}^{\rm miss} < 50 \; {\rm GeV}$ 

veto events containing a jet with  $p_{\rm T} > 60~{\rm GeV}$  veto events with b-tagged jets





#### Features

leading jet  $p_T$  $E_T^{miss}$  $p_T^{e\mu} (p_T^{ee}/p_T^{\mu\mu})$ used for  $ee/\mu\mu$  CRs) UiO **Department of Mathematics** University of Oslo

## **Eirik Gramstad**

# Recent searches for new phenomena with the ATLAS detector



XI International Conference on New Frontiers in Physics Kolymbari, Crete, Greece, August 30 - September 11, 2022