XI International Conference on New Frontiers in Physics

Contribution ID: 56

Type: Poster presentation

Search for single production of a vector-like T quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

Wednesday 7 September 2022 19:10 (20 minutes)

A search is made for a vector-like T quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb⁻¹.

The all-hadronic decay modes $H \to b\bar{b}$ and $t \to bW \to bq\bar{q}'$ are reconstructed as large-radius jets and identified using tagging algorithms.

Improvements in background estimation, signal discrimination, and a larger data sample, contribute to an improvement in sensitivity over previous all-hadronic searches.

No significant excess is observed above the background, so limits are set on the production cross-section of a singlet T quark at 95\% confidence level, depending on the mass, m_T , and coupling, κ_T , of the vector-like T quark to Standard Model particles.

This search targets a mass range between 1.0 to 2.3 TeV, and a coupling value between 0.1 to 1.6, expanding the phase space of previous searches.

In the considered mass range, the upper limit on the allowed coupling values increases with m_T from a minimum value of 0.35 for 1.07 $< m_T <$ 1.4 TeV up to 1.6 for $m_T = 2.3$ TeV.

Is this abstract from experiment?

Yes

Name of experiment and experimental site

ATLAS

Is the speaker for that presentation defined?

Yes

Details

Joel Hengwei Foo joel.hengwei.foo@cern.ch (University of Toronto (CA))

Internet talk

Maybe

 $\textbf{Authors:} \quad \text{VARNES, Erich Ward (University of Arizona (US)); } FOO, Joel Hengwei (University of Toronto (CA))$

Presenter: FOO, Joel Hengwei (University of Toronto (CA))

Session Classification: Poster Session