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Physical Problem
Possible unification of GR with QM requires 

quantization of GR and also gravitization of QM  

General Relativity 

(roughed at some scale)

• Spacetime discretization,

• Measurement uncertainty,

• Noncommutative relations,

• Generalized Riemann manifold

Quantum Mechanics 

(smoothed at some scale)

• Gravitational field impacts,

• Generalized noncommutitavity, 

• Relativity principle,

• Isotropy & Lorentz covariance

A minimum measurable length sets limits on space continuity

At low scales, GR coordinates would not be arbitrary smooth.

Quantizing GR allows
corrections at low scale

Gravitating QM allows
corrections at large scale



Non-Relativistic GUP

• The quadratic momenta corrections to Heisenberg uncertainty 
principle as suggested by Kempf-Mangano-Mann reads

and

implying a minimum measurable length

• There are various GUP proposals, for example, Maggiore,

motivated by quantum deformation of the Pioncarre algebra   
implying a minimal length associated with as  



Need for Relativistic GUP

The non-relativistic 3d-GUP has no temporal dimension. 
Thus, in spacetime: 

1. either commutators or uncertainties are NOT 
necessarily Lorentz covariant, PPNL13(2016)59

2. this means that 𝚫𝒙𝒎𝒊𝒏 is frame dependent, and
3. this causes nonlinear additional law of momenta.

With the Lorentz transformation represented by 
the unitary operator

𝑼 𝒑𝝂,𝑴𝝆𝝈 = 𝒆𝒊𝜶𝝂𝒑𝝂𝒆
𝒊

𝟐
𝝎𝝆𝝈𝑴

𝝆𝝈

𝑴𝝁𝝂 = 𝒑𝝁𝒙𝝂 − 𝒑𝝂𝒙𝝁 = 𝟏 + 𝜷𝒑𝟎
𝝆
𝒑𝟎𝝆 ሖ𝑴𝝁𝝂

we get ƴ𝒙𝝁 = 𝑼 𝒙𝝁𝑼−𝟏, ƴ𝒑𝝁 = 𝑼 𝒑𝝁𝑼−𝟏, and find that

ƴ𝒙𝝁, ƴ𝒑𝝂 = 𝒊ℏ 𝟏 + 𝜷 ƴ𝒑𝝆 ƴ𝒑𝝆 𝜼𝝁𝝂 + 𝒊ℏ𝜷 ƴ𝒑𝝁 ƴ𝒑𝝂

which is Lorentz covariant

generator of the Lorentz group   



Need for Relativistic GUP

• Non-relativistic 3d-GUP generalizes the momentum 

operator ෝ𝒑𝒊 = ෝ𝒑𝟎𝒊 𝟏 + 𝜷 𝒑𝟐 but not length operator ෝ𝒙𝒊 = ෝ𝒙𝟎𝒊,
• Accordingly, relativistic dispersion relation is deformed

𝑬𝟐 = 𝒎 𝒄𝟐
𝟐
+ 𝒑𝒄 𝟐 +𝓞 𝒑𝟒 ,

and nonlinear additional law of momenta, like ෝ𝒑𝟑 = ෝ𝒑𝟐+ෝ𝒑𝟏
appears. 

• In Poincare algebra, the generator of the Lorentz group   

𝑴𝝁𝝂 = 𝒑𝝁𝒙𝝂 − 𝒑𝝂𝒙𝝁 = 𝟏 + 𝜷𝒑𝟎
𝝆
𝒑𝟎𝝆 ሖ𝑴𝝁𝝂

where ሖ𝑴𝝁𝝂 = 𝒑𝟎
𝝁
𝒙𝟎
𝝂 − 𝒑𝟎

𝝂𝒙𝟎
𝝁
, 𝒑𝝁𝒑

𝝁 is Casimir operator of Lorentz    

algebra which commutes with p and 𝒑𝟐; 𝑴𝝁𝝂, 𝒑
𝟐 = 𝒑𝟐, 𝒑𝝁 = 𝟎.

• The operator 𝒑𝝁𝒑
𝝁 also commutes with other Casimirs, like 

𝑾𝝁𝑾𝝁 where 𝑾𝝁 ≔
𝟏

𝟐
𝝐𝝁𝝂𝝆𝝀𝑴

𝝂𝝆𝒑𝝀, so that 𝒑𝝁,𝑾𝝁 = 𝒑,𝑾𝝂𝑾𝝂 = 𝟎.

• This leads to 𝒑𝝁𝒑
𝝁 = −𝒄𝟒𝒎𝟐, squared dispersion relation and 

thus fulfilling linearity of additional law of momenta.



Need for Relativistic GUP

• To assure that 𝚫𝒙𝒎𝒊𝒏 is Lorentz invariant, we start with 

the spacetime noncommutativity

𝒙𝝁, 𝒙𝝂 = −𝟐𝒊ℏ 𝒙𝝁𝒑𝝂 − 𝒙𝝂𝒑𝝁

and the length-momentum noncommutativity

𝒙𝝁, 𝒑𝝂 = 𝒙𝝁𝒑𝝂 − 𝒑𝝂𝒙𝝁 = 𝒊ℏ 𝜼𝝁𝝂 + 𝟐𝜷𝒑𝝁𝒑𝝂

• Then,     

𝒙𝝁, 𝒙𝝂 = 𝟐 ℏ𝟐(𝜼𝝁𝝂 + 𝟐𝜷𝒑𝝁𝒑𝝂) − 𝟐𝒊ℏ𝑴𝝂𝝁

• This means that the spacetime coordinates
i. are likely noncommutative,
ii. have similarities with Snyder algebra but
iii. not forming a closed algebra (as depending on p).



Relativistic GUP
• We assume that the physical position and momentum in terms 

of their auxiliary 4-vectors 𝒙𝟎
𝝁

and 𝒑𝟎
𝝁
, read

ෝ𝒙𝝁 = 𝒇(ෝ𝒙𝟎
𝝁
, ෝ𝒑𝟎

𝝁
)

ෝ𝒑𝝁 = ෝ𝒑𝟎
𝝁
𝟏 + 𝜷𝒑𝟎

𝝆
𝒑𝟎𝝆

where 𝒊 ∈ 𝟏, 𝟐, 𝟑 and 𝝁, 𝝂 ∈ {𝟎, 𝟏, 𝟐, 𝟑},  is a dummy index,  

𝒙𝟎
𝟎 = 𝒄𝒕,

𝒑𝟎
𝟎 = 𝑬/𝒄

are parameters, and ෝ𝒙𝟎
𝝁
, ෝ𝒑𝟎

𝝁
are canonically conjugate variables, 

ෝ𝒙𝟎
𝝁
, ෝ𝒑𝟎

𝝂 = 𝒊ℏ𝜼𝝁𝝂. Both quantities are depending on ෝ𝒙𝟎
𝝁
, ෝ𝒑𝟎

𝝂

• Under isotropic condition and with relativity principle, we ger 
that the relativistic generalized uncertainty principle is given as

ෝ𝒙𝝁, ෝ𝒑𝝂 = 𝒊ℏ 𝟏 + 𝜷ෝ𝒑𝟎
𝝆
ෝ𝒑𝟎𝝆 𝜼𝝁𝝂 + 𝟐𝜷ෝ𝒑𝝁ෝ𝒑𝝂

• From Robertson uncertainty principle which follows from 
Schrödinger uncertainty principle, 

𝚫𝒙𝝁𝚫𝒑𝝂 ≥
𝟏

𝟐
ෝ𝒙𝝁, ෝ𝒑𝝂



Relativistic GUP
• The relativistic generalized length-momentum uncertainties in 

curved spacetime, 𝜼𝝁𝝂 → 𝒈𝝁𝝂, are given as

𝚫𝒙𝝁𝚫𝒑𝝂 ≥
ℏ

𝟐
𝒈𝝁𝝂 + 𝜷 𝚫𝒑 𝟐 + 𝜷 𝒑 𝟐 − 𝜷 𝚫𝒑𝝁 𝟐 − 𝜷 𝚫𝒑𝝂 𝟐

• To have real roots for 𝚫𝒑𝝂, it is required that

𝚫𝒙𝝁 𝟐 ≥ ℏ𝟐 𝜷𝟐 𝒑 𝟐 − 𝚫𝒑𝝁 𝟐 − 𝚫𝒑𝝂 𝟐 − 𝜷𝒈𝝁𝝂

• This leads to a minimum measurable length, which is frame 
(coordinate) independent 

𝚫𝒙𝒎𝒊𝒏
𝝁

≥ ± −𝒈𝝁𝝂ℏ 𝜷 = ± − 𝒈 √𝜷𝟎𝓵𝒑

In this regard, with RGUP in curved spacetime, Jacobi identity 
is well guaranteed.



Relativistic GUP

• The result that the minimum measurable length 𝚫𝒙𝒎𝒊𝒏
𝝁

is given in 

terms of −𝒅𝒆𝒕 𝒈 is interesting, as in GR no physical dimensions are 

assigned to the coordinates. They are fundamentally arbitrary. 

• Jacobian determinant J and −𝒅𝒆𝒕 𝒈 (sign) assure invariant 

transformation from one system of coordinates to another, so that

−𝒅𝒆𝒕 𝒈 𝚫𝒙𝒎𝒊𝒏
𝝁

= 𝚫 ƴ𝒙𝒎𝒊𝒏
𝝁

is frame independent (Lorentz invariant).

• Then, the minimum measurable length, which is frame 
(coordinate) independent 

𝚫𝒙𝒎𝒊𝒏
𝝁

≥ ± −𝒈𝝁𝝂ℏ 𝜷 = ± − 𝒈 √𝜷𝟎𝓵𝒑

Now, we can determine the uncertainties in GR: 
• For length

𝒙𝝁 = 𝒙𝟎
𝝁
− 𝚫𝒙𝒎𝒊𝒏

𝝁
= 𝒙𝟎

𝟎 − 𝚫𝒙𝒎𝒊𝒏 , 𝒙𝟎
𝒊 − 𝚫𝒙𝒎𝒊𝒏

then 

𝚫𝒙𝝁 = 𝚫𝒙𝟎
𝝁
− 𝟐√𝜷𝟎𝓵𝒑



Relativistic GUP
• For momentum, which follows from roots of

𝚫𝒙𝝁𝚫𝒑𝝂 ≥
ℏ

𝟐
𝒈𝝁𝝂 + 𝜷 𝚫𝒑 𝟐 + 𝜷 𝒑 𝟐 − 𝜷 𝚫𝒑𝝁 𝟐 − 𝜷 𝚫𝒑𝝂 𝟐

Then

𝚫𝒑𝝂 ≤
𝟏

ℏ𝜷
𝚫𝒙𝝁 ± 𝚫𝒙𝝁 𝟐 − 𝜷ℏ𝟐𝒈𝝁𝝂

𝟏/𝟐

𝚫𝒑𝝂 ≤
𝟏

ℏ𝜷
𝚫𝒙𝝁 ± 𝚫𝒙𝝁 +

𝟏

𝟐

𝚫𝒙𝒎𝒊𝒏
𝝁 𝟐

𝚫𝒙𝝁

• This suggests that 

𝚫𝒙𝝁

ℏ𝜷

𝟏

𝟐

𝚫𝒙𝒎𝒊𝒏
𝝁

𝚫𝒙𝝁

𝟐

≤ 𝚫𝒑𝝂 ≤ 𝟐
𝚫𝒙𝝁

ℏ𝜷
𝟏 +

𝟏

𝟒

𝚫𝒙𝒎𝒊𝒏
𝝁

𝚫𝒙𝝁

𝟐

𝚫𝒑𝝂 ≤
𝟐

ℏ𝜷
𝚫𝒙𝝁

𝚫𝒑𝟎
𝝂 ≤

𝟐

ℏ𝜷

𝚫𝒙𝟎
𝝁
− 𝟐√𝜷𝟎𝓵𝒑

𝟏 + 𝜷𝒈𝟎𝝆𝚫 𝒑𝟎
𝟐



Relativistic GUP

If these results were correct, at relativistic energy scale,  
we conclude that 

• the spacetime is neither smooth nor continuous as 
an inaccessible spacetime element whose volume  

characterized by 𝚫𝒙𝒎𝒊𝒏
𝝁

exists,

• not only coordinates and momenta are uncertain, 
but other physical quantities have noncommutative 
relations, as well,

• due uncertainties, events likely happen in jumps 
with nondeterministic outcomes,

• the measurements are likely neither precise nor 
noncoherent.



Generalized Manifold (Finsler)

• Generalization of 𝒈𝝁𝝂 would be possible on 
generalized Riemann manifold M:

• Riemann geometry (M,g): at point x:
• metric tensor 𝒈 = 𝒈𝝁𝝂 𝒙 𝒅𝒙𝝁⊗𝒅𝒙𝝂,

• length of curve c, ∫𝒄 𝒈𝝁𝝂 𝒙 𝒅𝒙𝝁𝒅𝒙𝝂 or

∫𝒔𝟏
𝒔𝟐 𝒈𝝁𝝂 𝒔 𝒅 ሶ𝒙𝝁𝒅 ሶ𝒙𝝂𝒅𝒔, where ሶ𝒙 =

𝒅𝒙

𝒅𝒔

• Finsler geometry (M,F): at 𝒙 on M, the 
Finsler structure 𝑭 𝒙, ሶ𝒙 is related to the  
generalized metric tensor 

𝑭 = 𝒈𝝁𝝂 𝒙 𝒅 ሶ𝒙𝝁𝒅 ሶ𝒙𝝂 and 𝒈:=
𝟏

𝟐

𝝏𝟐𝑭𝟐

𝝏 ሶ𝒙𝝁𝝏 ሶ𝒙𝝂
.

• 𝑭 is +ive for ሶ𝒙 ≠ 𝟎 on tangent bundle TM & homogeneous 
of degree 1 in ሶ𝒙,

• therefore, on TM, at local coordinates 𝒙, ሶ𝒙 , 
𝑭 𝒙, 𝒍𝒂𝒎𝒃𝒅𝒂 ሶ𝒙 = 𝑭 𝒙, ሶ𝒙 ,   ∀ ∈ R+

• the ratio of lengths of any two collinear vectors doesn’t 
include metric functions.



Generalized Manifold (Finsler)

• In Finsler geometry, the special case 𝑭 𝒙, ሶ𝒙 = 𝒈𝝁𝝂 𝒙 𝒅 ሶ𝒙𝝁𝒅 ሶ𝒙𝝂

distinguishes Finsler from Riemann geometry; a relaxation 
of quadratic restriction Notices Amer. Math. Soc. 43(1996) 95.

• The length of a curve c is given as ∫𝒄𝑭 𝒙, ሶ𝒙 or 

∫𝒔𝟏
𝒔𝟐
𝑭 𝒙𝝁 𝒔 , ሶ𝒙𝝁 𝒔 𝒅𝒔.

• If 𝚫𝒙𝒎𝒊𝒏
𝝁

sets limitations on the space and momentum 

coordinates in GR and determines their uncertainties, their 
measurements are likely no longer arbitrary precise or 
noncoherent. Thus, we assume that

𝑭 𝒙, 𝚫𝒙𝒎𝒊𝒏
𝝁 ሶ𝒙 = 𝚫𝒙𝒎𝒊𝒏

𝝁
𝑭 𝒙, ሶ𝒙 , ∀ 𝚫𝒙𝒎𝒊𝒏

𝝁
≥ 𝟎.

• On TM, the metric tensor given as 𝒈𝑨𝑩 = 𝒈𝝁𝝂⨂𝒈𝝁𝝂 could be 

determined by the Hessian in the 𝒙, ሶ𝒙 -coordinates,

𝒈𝑨𝑩 =
𝟏

𝟐

𝝏𝟐𝑭𝟐 𝒙,𝚫𝒙𝒎𝒊𝒏
𝝁

ሶ𝒙

𝝏 ሶ𝒙𝜶𝝏 ሶ𝒙𝜷

where each 𝒈𝝁𝝂 is homogeneous of degree 0 in ሶ𝒙.



Quantized Metric Tensor

To summarize, for quadratic F, 𝒈𝝁𝝂 reduces to 𝒈𝝁𝝂 𝒙 living 

on M.

• On TM, coordinates are 8d, 𝒙𝑨 = (𝒙𝜶, 𝚫𝒙𝒎𝒊𝒏
𝝁

ሶ𝒙𝜶),

• On TM, the line element is given as 𝒅෤𝒔𝟐 = 𝒈𝑨𝑩𝒅𝒙
𝑨𝒅𝒙𝑩,

• On M, 4d-manifold, the line element is 𝒅෤𝒔𝟐 = ෥𝒈𝝁𝝂𝒅𝝃
𝝁𝒅𝝃𝝂.

This leads to 

෥𝒈𝝁𝝂 = 𝒈𝑨𝑩
𝝏𝒙𝑨

𝝏𝝃𝜶
𝝏𝒙𝑩

𝝏𝝃𝜷

where 𝑨,𝑩 ∈ 𝟎, 𝟏, 𝟐,… , 𝟕 , 𝐚𝐧𝐝 𝜶,𝜷, 𝝁, 𝝂 ∈ {𝟎, 𝟏, 𝟐, 𝟑}. Then,

෥𝒈𝝁𝝂 = 𝟏 + − 𝒈 ℏ𝟐𝜷 ሷ𝒙 𝟐 𝒈𝝁𝝂 = 𝟏 + − 𝒈 𝜷𝟎𝓵𝒑
𝟐 ሷ𝒙 𝟐 𝒈𝝁𝝂

where ሷ𝒙 𝟐 = ሷ𝒙𝝀 ሷ𝒙𝝀 = 𝒈𝜸𝜹 ሷ𝒙𝜹 ሷ𝒙𝜸 and 𝝀, 𝜸, 𝜹 are dummy indices.



Quantized Metric Tensor

• On the Riemann manifold M,  

෥𝒈𝝁𝝂 = 𝒈𝝁𝝂 + − 𝒈 𝜷𝟎𝓵𝒑
𝟐 ሷ𝒙 𝟐 𝒈𝝁𝝂 = 𝟏 + 𝓣 ሷ𝒙 𝟐 𝒈𝝁𝝂

where − 𝒈 𝜷𝟎𝓵𝒑
𝟐 ሷ𝒙 𝟐 𝒈𝝁𝝂 = 𝟏 + 𝓣 ሷ𝒙 𝟐 𝒈𝝁𝝂 could be seen     

as local perturbations to the curved spacetime.

• Quantization of the local perturbations is possible through:

• coordinate-independent discretization − 𝒈 𝜷𝟎𝓵𝒑
𝟐 , and

• second-order derivatives of the coordinates ሷ𝒙 𝟐.

• ሷ𝒙 𝟐 = ሷ𝒙𝝀 ሷ𝒙𝝀 =
𝝏 ሶ𝒙𝝀

𝝏𝝃𝝀
𝝏 ሶ𝒙𝝀

𝝏𝝃𝝀
could be treated as 

• spacelike four-acceleration, or
• local geodesic equation.

• To count for consequences of 𝚫𝒙𝒎𝒊𝒏
𝝁

, tangent bundle 

TM and Finsler manifold with quadratic F are 
assumed, on which 𝒈𝝁𝝂 reduces to the usual 𝒈𝝁𝝂 𝒙

living on M.



Affine Connection

• a geometric object connecting
nearby tangent (curved) spaces,
i.e., permitting differentiability of
the tangent vector fields or
assuring them restrict dependence
on manifold in a fixed vector space,

• a function assigning to each
tangent vector and each vector
field a covariant derivative or a
new tangent vector.

In differential geometry, the generic form of AC reads

Levi–Civita connection Covariant derivative of metric

Torsion

Christoffel symbol



Affine Connection

GR assumes torsion-free and metric compatibility. 
The latter implies linear independence of partial derivative tangent 
vectors and a flat space that can be found locally in a suitable frame 
(like Mikowski space),

Levi–Civita connection Covariant derivative of metric

Torsion

Christoffel symbol



Affine Connection/Parallel Transport
With ෥𝒈𝝁𝝂 = 𝒈𝝁𝝂 + − 𝒈 𝜷𝟎𝓵𝒑

𝟐 ሷ𝒙 𝟐 𝒈𝝁𝝂 or

• The covariant derivatives are rates of change of tangent vector 
fields with normal component subtracted, i.e., parallel transport. 

• Vanishing covariant derivatives of a vector means that the vector 
is parallel transported, i.e., keeping it as constant as possible

Quantum-induced corrections are linearly factorized to classical AC.

Quantum-induced corrections are linearly factorized to classical AC.



Affine Connection/Parallel Transport

Quantum-induced corrections increase with ሷ𝑥 2



The coefficients of the Riemann curvature tensor can be 
constructed from the Levi-Civita connections

This expression holds for all connections regardless their 
metric compatibility or torsion-free property, 

Riemann Curvature Tensor



Riemann Curvature Tensor



Riemann Curvature Tensor



Riemann Curvature Tensor



Ricci Curvature Tensor

While the Riemann curvature tensor confirms whether a vector is
twisted when it is parallel transported around a small loop in curved
space, the Ricci curvature tensor, which is the only possible
contraction of Riemann tensor, tracks the volume change along the
geodesics, and therefore represents how quickly a volume is
changing along the geodesics. Hence, Ricci curvature tensor
represents gravity in the general theory of relativity.



Ricci Scalar

The Ricci scalar gives how the volume in curved space deviates from
its equivalent flat–space size and can be contracted from Ricci
curvature tensor



Ricci Scalar



Einstein Tensor



Einstein Tensor



Einstein Tensor



RGUP

Metric tensor

Summary

ෝ𝒙𝝁 = ෝ𝒙𝟎
𝝁
= 𝒙𝟎

𝟎, 𝒙𝟎
𝒊 and    ෝ𝒑𝝁 = ෝ𝒑𝟎

𝝁
𝟏 + 𝜷𝒑𝟎

𝝆
𝒑𝟎𝝆 = 𝒑𝟎

𝟎, 𝒑𝟎
𝒊 𝟏 + 𝜷𝒑𝟎

𝝆
𝒑𝟎𝝆 ,

ෝ𝒙𝝁, ෝ𝒑𝝂 = 𝒊ℏ 𝟏 + 𝜷ෝ𝒑𝟎
𝝆
ෝ𝒑𝟎𝝆 𝜼𝝁𝝂 + 𝟐𝜷ෝ𝒑𝝁ෝ𝒑𝝂 ,

𝚫𝒙𝝁𝚫𝒑𝝂 ≥
ℏ

𝟐
𝒈𝝁𝝂 + 𝜷 𝚫𝒑 𝟐 + 𝜷 𝒑 𝟐 − 𝜷 𝚫𝒑𝝁 𝟐 − 𝜷 𝚫𝒑𝝂 𝟐 ,

𝚫𝒙𝒎𝒊𝒏
𝝁

≥ ± −𝒈𝝁𝝂ℏ 𝜷 = ± 𝒈 √𝜷𝟎𝓵𝒑 and   𝚫𝒙𝝁 = 𝚫𝒙𝟎
𝝁
− 𝟐√𝜷𝟎𝓵𝒑,

𝚫𝒑𝝂 ≤
𝟏

ℏ𝜷
𝚫𝒙𝝁 ± 𝚫𝒙𝝁 +

𝟏

𝟐

𝚫𝒙𝒎𝒊𝒏
𝝁 𝟐

𝚫𝒙𝝁
or 

𝚫𝒑𝝂 ≤
𝟐

ℏ𝜷
𝚫𝒙𝝁 and 𝚫𝒑𝟎

𝝂 ≤
𝟐

ℏ𝜷

𝚫𝒙𝟎
𝝁
−𝟐√𝜷𝟎𝓵𝒑

𝟏+𝜷𝒈𝟎𝝆𝚫 𝒑𝟎
𝟐.

෥𝒈𝝁𝝂 = 𝒈𝝁𝝂 + − 𝒈 𝜷𝟎𝓵𝒑
𝟐 ሷ𝒙 𝟐 𝒈𝝁𝝂 where ሷ𝒙 𝟐 = ሷ𝒙𝝀 ሷ𝒙𝝀 =

𝝏 ሶ𝒙𝝀

𝝏𝝃𝝀
𝝏 ሶ𝒙𝝀

𝝏𝝃𝝀

Quantum-induced corrections are linearly added so that 
vanishing corrections retrieve GR metric tensor 𝒈𝝁𝝂.



Summary

Riemann 

Curvature  

Tensor

Ricci 

Curvature 

Tensor

Ricci Scalar



Summary

Einstein 

Tensor

Covariant 

Derivative



Thank you very much!
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