

International Conference on New Frontiers in Physics (ICNFP), 2022

Azimuthal anisotropy of strange and multi-strange hadrons in isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Priyanshi Sinha
(for the STAR Collaboration)
Indian Institute of Science Education and Research (IISER) Tirupati, India

Elliptic flow

Reaction plane: z-x plane

$$\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_R)) \right]$$

$$v_n = \langle \cos(n(\phi - \Psi_R)) \rangle$$

- > Sensitive to early times in the evolution of the system
- > Useful in understanding the nuclear structure

Motivation

- Study of elliptic flow in isobar collisions may help in understanding the deformation of the colliding nuclei
- v₂ of strange and multi-strange hadrons, having lower hadronic cross-section, gives direct information on initial state anisotropies Check if:

$$\frac{(v_2)_{Ru+Ru}}{(v_2)_{Zr+Zr}} = 1$$

System size dependence of the azimuthal anisotropy

 $^{238}_{92}U$, $^{197}_{79}Au$, $^{96}_{44}Ru$, $^{96}_{40}Zr$, $^{63}_{29}Cu$

M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105, 14901 (2022)

STAR experiment

Dataset: Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV (2018)

- Particle identification using TPC and TOF
- Systematic uncertainty sources: Event and track selections, Topological selection, Functional fitting for yield extraction

Event plane method

Azimuthal angle of event plane is defined as :

$$\Psi_2 = \left[\tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right) \right] / 2$$

- Fivent plane has been calculated in two different pseudo-rapidity windows 'a' (-1.0 < η < -0.05) and 'b' (0.05 < η < 1.0)
- The event plane resolution using η-sub event approach:

$$R = \sqrt{\langle \cos 2(\Psi_2^a - \Psi_2^b) \rangle}$$

> Resolution correction is applied to obtain the final v₂

*Statistical error within marker size

Particle reconstruction

- \succ K_s⁰, ϕ , Λ , and Ξ have been reconstructed using invariant mass method; topological cuts using Helix method
- \succ Background reconstruction using event-mixing method for ϕ -mesons and rotational method for K $_{
 m s}{}^0$, Λ , and Ξ

Flow analysis method

Event plane method:

 \blacktriangleright Particle raw-yields as a function of ϕ - Ψ_2 are fitted with a Fourier function for different p_T ranges to extract v_2 coefficients

Results: Elliptic flow

*Vertical bars indicate statistical error and shaded boxes denote systematic errors

- \triangleright v₂ shows a mass ordering at low p_T in isobar collisions
- \triangleright Baryon-meson splitting at $p_T > 2$ GeV/c
- > v₂ values have similar p_T dependence in minimum bias Ru+Ru and Zr+Zr collisions

Centrality dependence of $v_2(p_T)$

*Vertical bars indicate statistical error and shaded boxes denote systematic errors

- \triangleright Strong centrality dependence is observed for v_2 of K_s^0 , Λ , and $\overline{\Lambda}$, in both Ru+Ru and Zr+Zr collisions
- \triangleright $v_2(p_T)$ increases from central to peripheral collisions

Centrality dependence of $v_2(p_T)$

*Vertical bars indicate statistical error and shaded boxes denote systematic errors

- \triangleright Strong centrality dependence is observed for v_2 of ϕ , Ξ^- , and Ξ^+ in both Ru+Ru and Zr+Zr collisions
- \triangleright v₂ (p_T) increases from central to peripheral collisions

NCQ scaling

Transverse kinetic energy (KE_T) = $m_T - m_0$

- NCQ scaling holds good within 10% uncertainties for (multi-)strange in both Ru+Ru and Zr+Zr collisions
 - → Indicative of partonic collectivity in the system

v₂ vs centrality

- p_T-integrated elliptic flow increases from central to peripheral collisions
- Ratios of v_2 between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV for K_s^0 , Λ and $\overline{\Lambda}$ deviates from unity by ~2% at central and midcentral collisions
 - → May indicate nuclear shape and structure difference between the two isobars

^{*}No tracking efficiency correction since the effect would be largely cancelled *Error in the ratio includes statistical and systematic uncertainties

System size dependence (strange)

- \triangleright v₂ of K_s⁰, \land , and $\overline{\land}$ in isobar collisions is smaller than in ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions at higher p_T
- \triangleright v₂ in isobar collisions is larger as compared to ⁶³Cu+⁶³Cu collisions at higher p_T

B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008) B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 044902 (2010) M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 103, 064907 (2021)

System size dependence (multi-strange)

n: number of quarks; a, b, c, d: free parameters

- \triangleright v₂ of ϕ is similar in the measured p_T range for different collision systems within uncertainties
- > v₂ of **Ξ** is lower than ²³⁸U+²³⁸U collisions at higher p_T

B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008) B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 044902 (2010)

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016)

Summary

- \triangleright Elliptic flow of K_s^0 , Λ , $\overline{\Lambda}$, ϕ , and Ξ has been measured using event plane method for Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- \triangleright Strong centrality dependence of v_2 for all particles has been observed
- > NCQ scaling holds good within 10% uncertainties for all particles in all centralities for the isobar collisions
- > Elliptic flow ratio for Ru+Ru over Zr+Zr shows a deviation of nearly 2% in central and mid-central collisions
 - → Maybe related to nuclear shape and structure difference between the two isobars
- \triangleright v₂ of strange hadrons in isobar collisions
 - \triangleright At high p_T: Smaller compared to Au+Au and U+U collisions, and larger compared to Cu+Cu collisions
 - \triangleright At low p_T: Similar for all collision systems studied

Thank you for your attention!

v₂ vs centrality

*Vertical bars indicate statistical error and shaded box denote systematic errors
*Error in the ratio includes statistical and systematic uncertainties

- \triangleright p_T-integrated elliptic flow increases from central to peripheral collisions
- Ratio of v_2 between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV for charged hadrons are comparable within the current uncertainties