International Conference on New Frontiers in Physics (ICNFP), 2022 # Azimuthal anisotropy of strange and multi-strange hadrons in isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ Priyanshi Sinha (for the STAR Collaboration) Indian Institute of Science Education and Research (IISER) Tirupati, India #### Elliptic flow Reaction plane: z-x plane $$\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_R)) \right]$$ $$v_n = \langle \cos(n(\phi - \Psi_R)) \rangle$$ - > Sensitive to early times in the evolution of the system - > Useful in understanding the nuclear structure #### **Motivation** - Study of elliptic flow in isobar collisions may help in understanding the deformation of the colliding nuclei - v₂ of strange and multi-strange hadrons, having lower hadronic cross-section, gives direct information on initial state anisotropies Check if: $$\frac{(v_2)_{Ru+Ru}}{(v_2)_{Zr+Zr}} = 1$$ System size dependence of the azimuthal anisotropy $^{238}_{92}U$, $^{197}_{79}Au$, $^{96}_{44}Ru$, $^{96}_{40}Zr$, $^{63}_{29}Cu$ M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105, 14901 (2022) #### **STAR** experiment **Dataset:** Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV (2018) - Particle identification using TPC and TOF - Systematic uncertainty sources: Event and track selections, Topological selection, Functional fitting for yield extraction #### Event plane method Azimuthal angle of event plane is defined as : $$\Psi_2 = \left[\tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right) \right] / 2$$ - Fivent plane has been calculated in two different pseudo-rapidity windows 'a' (-1.0 < η < -0.05) and 'b' (0.05 < η < 1.0) - The event plane resolution using η-sub event approach: $$R = \sqrt{\langle \cos 2(\Psi_2^a - \Psi_2^b) \rangle}$$ > Resolution correction is applied to obtain the final v₂ *Statistical error within marker size #### Particle reconstruction - \succ K_s⁰, ϕ , Λ , and Ξ have been reconstructed using invariant mass method; topological cuts using Helix method - \succ Background reconstruction using event-mixing method for ϕ -mesons and rotational method for K $_{ m s}{}^0$, Λ , and Ξ #### Flow analysis method #### **Event plane method:** \blacktriangleright Particle raw-yields as a function of ϕ - Ψ_2 are fitted with a Fourier function for different p_T ranges to extract v_2 coefficients #### **Results: Elliptic flow** *Vertical bars indicate statistical error and shaded boxes denote systematic errors - \triangleright v₂ shows a mass ordering at low p_T in isobar collisions - \triangleright Baryon-meson splitting at $p_T > 2$ GeV/c - > v₂ values have similar p_T dependence in minimum bias Ru+Ru and Zr+Zr collisions ## Centrality dependence of $v_2(p_T)$ *Vertical bars indicate statistical error and shaded boxes denote systematic errors - \triangleright Strong centrality dependence is observed for v_2 of K_s^0 , Λ , and $\overline{\Lambda}$, in both Ru+Ru and Zr+Zr collisions - \triangleright $v_2(p_T)$ increases from central to peripheral collisions #### Centrality dependence of $v_2(p_T)$ *Vertical bars indicate statistical error and shaded boxes denote systematic errors - \triangleright Strong centrality dependence is observed for v_2 of ϕ , Ξ^- , and Ξ^+ in both Ru+Ru and Zr+Zr collisions - \triangleright v₂ (p_T) increases from central to peripheral collisions ## NCQ scaling Transverse kinetic energy (KE_T) = $m_T - m_0$ - NCQ scaling holds good within 10% uncertainties for (multi-)strange in both Ru+Ru and Zr+Zr collisions - → Indicative of partonic collectivity in the system #### v₂ vs centrality - p_T-integrated elliptic flow increases from central to peripheral collisions - Ratios of v_2 between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV for K_s^0 , Λ and $\overline{\Lambda}$ deviates from unity by ~2% at central and midcentral collisions - → May indicate nuclear shape and structure difference between the two isobars ^{*}No tracking efficiency correction since the effect would be largely cancelled *Error in the ratio includes statistical and systematic uncertainties #### System size dependence (strange) - \triangleright v₂ of K_s⁰, \land , and $\overline{\land}$ in isobar collisions is smaller than in ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions at higher p_T - \triangleright v₂ in isobar collisions is larger as compared to ⁶³Cu+⁶³Cu collisions at higher p_T B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008) B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 044902 (2010) M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 103, 064907 (2021) #### System size dependence (multi-strange) n: number of quarks; a, b, c, d: free parameters - \triangleright v₂ of ϕ is similar in the measured p_T range for different collision systems within uncertainties - > v₂ of **Ξ** is lower than ²³⁸U+²³⁸U collisions at higher p_T B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008) B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 044902 (2010) L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016) ## Summary - \triangleright Elliptic flow of K_s^0 , Λ , $\overline{\Lambda}$, ϕ , and Ξ has been measured using event plane method for Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ - \triangleright Strong centrality dependence of v_2 for all particles has been observed - > NCQ scaling holds good within 10% uncertainties for all particles in all centralities for the isobar collisions - > Elliptic flow ratio for Ru+Ru over Zr+Zr shows a deviation of nearly 2% in central and mid-central collisions - → Maybe related to nuclear shape and structure difference between the two isobars - \triangleright v₂ of strange hadrons in isobar collisions - \triangleright At high p_T: Smaller compared to Au+Au and U+U collisions, and larger compared to Cu+Cu collisions - \triangleright At low p_T: Similar for all collision systems studied ## Thank you for your attention! #### v₂ vs centrality *Vertical bars indicate statistical error and shaded box denote systematic errors *Error in the ratio includes statistical and systematic uncertainties - \triangleright p_T-integrated elliptic flow increases from central to peripheral collisions - Ratio of v_2 between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV for charged hadrons are comparable within the current uncertainties