

1

ATLAS Searches for Supersymmetry with Long-Lived Particles

K.K. Gan The Ohio State University

On behalf of ATLAS Collaboration

September 9, 2022

K.K. Gan

- Introduction
- Search for jets with displaced vertices
- Search for displaced photons from exotic Higgs decays
- Search for displaced photon/electron pair from Higgs/Z decays
- Search long-lived charged particles with large ionisation
- Summary

Introduction

- No evidence of supersymmetry in extensive searches by ATLAS and CMS
 search for supersymmetry with long-lived particles
- ATLAS searches in *pp* collisions at $\sqrt{s} = 13$ TeV
- Integrated luminosity: 139 fb⁻¹

Search for Displaced Vertices plus Jets

 $\tilde{\chi}_1^0$

ATLAS-CONF-2022-054

Displaced

- search for long-lived massive particles in multijet events with displaced vertices (DV) in the inner detector M_{DV} > 10 GeV
- target small R-parity violating (RPV) coupling λ"
 ⇒ long-lived SUSY particles
- no SM processes produce a high-mass DV
 - background: material interactions, random crossing of tracks, and merged vertices
 - background estimated from data
 - nearly background free (~1 event/signal region) K.K. Gan

• Neutralinos with $m(\tilde{\chi}_1^0) < 1.5$ TeV are excluded for lifetimes between 0.03 and 1 ns

K.K. Gan

6

Search for Displaced Photons in Exotic Higgs Decays

ATLAS-CONF-2022-017

- fine segmentation of LAr EM calorimeter allows precise reconstruction of photon flight path
 - ⇒ select photons not produced at primary vertices
 - also precisely measure arrival time of photons
 - $E_T^{miss} > 80 \text{ GeV for } \Delta m = m(\text{NLSP}) m (\text{LSP}) = 10 \text{ GeV}$
 - $E_T^{miss} > 50 \text{ GeV for } \Delta m = m(\text{NLSP}) m (\text{LSP}) > 10 \text{ GeV}$
- select candidate photon with highest E_T

K.K. Gan

Signal Analysis for $\Delta m = m_{NLSP} - m_{LSP} > 10 \text{ GeV}$

- analyze arrival time in five bins of z displacement (Δz_γ) from primary vertex
- background shapes estimated from data
 data consistent with background expectations

Signal Analysis for $\Delta m = m_{NLSP} - m_{LSP} = 10 \text{ GeV}$

- analyze arrival time in five bins of z displacement (Δz_γ) from primary vertex
- background shapes estimated from data
 data consistent with background expectation

Limits on Exotic Higgs Decays

- set upper limit on BR(H→NLSP+NLSP) as a function of NLSP lifetime
 - limited sensitivity at low τ due to poor pointing resolution
 - limited sensitivity at high τ because decay is near edge of LAr
 - best sensitivity at $\tau \sim 1-10$ ns with BR < a few percent

Search for $\gamma\gamma$ /ee from Displaced Higgs/Z Production

ATLAS-CONF-2022-051

- again use fine segmentation of LAr EM calorimeter to precisely reconstruct EM shower flight path
 - \Rightarrow select $\gamma\gamma$ /ee not produced at primary vertex
 - also precisely measure arrival time of photons
 - $E_T^{miss} > 30 \text{ GeV}$
 - \bullet analyze displacement (ρ) and arrival time to search for signal

analyze average arrival times in five displacement bins
 arrival time distributions consistent with background expectations

Limits on $\tilde{\chi}_1^0$

- $m(\tilde{\chi}_1^0) > 369 \text{ GeV} @ \tau = 2 \text{ ns for } B(\tilde{\chi}_1^0 \rightarrow H\tilde{G}) = 100\%$
- $m(\tilde{\chi}_1^0) > 704 \text{ GeV} @ \tau = 2 \text{ ns for } B(\tilde{\chi}_1^0 \rightarrow Z\tilde{G}) = 100\%$
- higher sensitivity for $\tilde{\chi}_1^0 \to Z\tilde{G}$ because $B(Z \to ee) > B(H \to \gamma\gamma)$

Search Long-Lived Charged Particles with Large Ionisation

- Search for massive, charged, long-lived particles that move significantly slower than speed of light
 - high transverse momentum
 - anomalously large specific ionization loss, dE/dx
 - trajectory reconstructed in the inner tracking system
 - dE/dx measured in the pixel detector
 - mass extracted using Bethe-Bloch relation

- observed mass distributions extracted from dE/dx measurements show some excess at high mass (3.6 σ local/3.3 σ global)
 - ToF study of excess events with calorimeter/muon system show $\beta \sim 1$ K.K. Gan

Limits on R-Hadron

- most sensitive region: 10-30 ns
- Limits @ 95CL:
 - m > 2.27 TeV for $\tau = 20 \text{ ns} + m(\tilde{\chi}_1^0) = 100 \text{ GeV}$
 - m > 2.06 TeV for $\tau = 30 \text{ ns} + \Delta m(\tilde{g}, \tilde{\chi}_1^0) = 30 \text{ GeV}$

K.K. Gan

16

Limits on Chargino and Stau

- most sensitive region: 10-30 ns
- Limits @ 95CL:
 - chargino: m > 1.07 TeV for $\tau = 30$ ns
 - stau: 200 < m < 360 GeV for $\tau = 10$ ns

K.K. Gan

17

- ATLAS has greatly expanded the sensitivity to SUSY by searching for long-lived particles:
 - jets
 - photons/electrons
 - anomalously large specific ionization loss (dE/dx)
- No significant excess of events is observed
- Stay tuned for Run 3 with 3 times larger data sample

