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Gamma-Ray Bursts: the most extreme
phenomena in the Universe
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Gamma-Ray Bursts: the most extreme
phenomena in the Universe
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Gamma-Ray Bursts: the most extreme
phenomena in the Universe

Long gamma-ray burst Short gamma-ray burst

Long GRBS: core (>2 seconds’ duration) (<2 seconds’ duration)

collapse of pecular  Aredgnt e \
. —> <« Onto its core.... “
massive stars, i 2‘?&3}?&
binary system »

association with SN g olbigiote

..becoming so
dense that it

Short GRBs: NS-NS | \\\T i

supernova T OEY

or NS-BH mergers, ? ’/\"e;p;sion. colliding.
association with ” //i\\\
GW sources

The resulting torus
has at its center

w—— Short GRBs a powerful
. r A black hole.
- Long GRBs

Gamma rays
*Possibly neutron stars.




Shedding light on the early Universe with GRBs

(J Long GRBs: huge luminosities,
mostly emitted in the X and
gamma-rays

J Redshift distribution
extending at least to z ~9 and
association with exploding
massive stars

J Powerful tools for
cosmology: SFR evolution,
physics of re-ionization, high-z
low luminosity galaxies, pop
[l stars

First Stars and Reionization Era

Time since the
Big Bang (years)
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Today: Astronomers look back and understand

The Big Bang/Infiation
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Qur Solar System
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Shedding light on the early Universe with GRBs

A statistical sample of high-z GRBs can provide
fundamental information:

e measure independently the cosmic star-formation rate, even
beyond the limits of current and future galaxy surveys

» directly (or indirectly) detect the first population of stars (pop lll)
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* Detecting and studying primordial invisible galaxies

050904 F850LP |060522 F110W| 060927 F110W
2=6.29: Mg > 28.86 | Z=5.11: Mg >28.13 7=547: M5 > 28.57

F160W | 090423 F125W+F160W| 0904298 F160
Z7=6.73; Myg > 27.92 | Z=8:23:M,5>30.29 | Z=9.4; M,g> 28.49

B4}
Tanvir+12 e iy 3 =

Robertson&Ellis12

Even JWST and ELTs surveys will be not able to probe the faint end of the
galaxy Luminosity Function at high redshifts (z>6-8)



* Detecting and studying primordial invisible galaxies
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* Detecting and studying primordial invisible galaxies

050904 F850LP |060522 1

2=6.29; Mg > 28.86

Z=5.11; Mg >28.13

F160W | 090423 F125W+F1¢
Z=8.23; M,5 > 30.2

080913
Z=6.73; Mg > 27.92

e neutral hydrogen fraction

e escape fraction of UV
photons from  high-z
galaxies
e early metallicity of the
ISM and IGM and its
evolution
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Short GRBs and multi-messenger astrophysics
GW170817 + SHORT GRB 170817A + KN AT2017GFO (~40 Mpc):

the birth of multi-.messenger astrophysics

Lightcurve from Fermi/GBM (50 — 300 keV)

TR
. l
IPARIN

i _..l..,ﬂ | - I n IJ I # YI' It
e 1q|1'|1”|! ] mu1

e
[ “'IJ,
Ih

Gravitational-wave time-frequency map

.J_ N‘ Wl

Il

Il

AB Magnitude

| I
l o {4, g Lo
i p

YT

|

LIGO _

30°
LIGO/
| Virgo — £
W [ .-‘III1 i ilgl& | K
U Ty Ty [
‘ ‘ 0o GBM
16h 1
IPN Fermi /
INTEGRAL
-2n°
T T T I ]
F - E
- 3 g ]
C - = 3
a3 L | E
- . K
- = & [3 —:
*7Z :
— o] -
% sl
r eR [ ] i =
| er I I 7
E oV I ;
L eB I ]
E . | Lol ]

T-T, (days)

,\‘1 :

@
=2

Swope +10.9 h

30"

N

el

DLT40-20.5d




Short GRBs and multi-messenger astrophysics

GW170817 + SHORT GRB 170817A + KN AT2017GFO (~40 Mpc):
the birth of multi-.messenger astrophysics

Lightcurve from Fermi/GBM (50 — 300 keV)
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GRB: a key phenomenon for multi-messenger
astrophysics (and cosmology)

GW170817 + SHORT GRB 170817A + KN AT2017GFO
THE BIRTH OF MULTI-MESSENGER ASTROPHYSICS

Relativistic jet formation,
equation of state,

fundamental physics Cosmic sites of r-

process nucleosynthesis

New independent route
to measure cosmological
parameters
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Future GRB missions (late‘20s and ‘30s)

Probing the Early Universe with GRBS
Multi-messenger and time domain/Astrophysics

The transient high energysky
Synergy with next generation large Facilities (E-ELT SKATCTAS
ATHENA, GW and neutrino detectors)

d THESEUS (studied for ESA Cosmic Vision / M5), HiZ-
GUNDAM (JAXA, under study), TAP (idea for NASA probe-
class mission), Gamow Explorer (proposal for NASA
MIDEX): prompt emission down to soft X-rays, source
location accuracy of few arcmin, prompt follow-up with
NIR telescope, on-board REDSHIFT



Future GRB missions: the case of THESEUS
(led by Italy; ESA/M5 Phase-A study, re-proposed for M7)

THIS BREAKTHROUGH WILL BE ACHIEVED BY A MISSION CONCEPT
OVERCOMING MAIN LIMITATIONS OF CURRENT FACILITIES

Set of innovative wide-field monitors

with unprecedented combination of

broad energy range, sensitivity, FOV
and localization accuracy




Future GRB missions: the case of THESEUS
(led by Italy; ESA/M5 Phase-A study, re-proposed for M7)

THIS BREAKTHROUGH WILL BE ACHIEVED BY A MISSION CONCEPT
OVERCOMING MAIN LIMITATIONS OF CURRENT FACILITIES

Set of innovative wide-field monitors

with unprecedented combination of

broad energy range, sensitivity, FOV
and localization accuracy

On-board autonomous fast follow-up in
optical /NIR, arcsec location and redshift
measurement of detected
GRB/transients




Shedding light on the early Universe with GRBs
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Shedding light on the early Universe with GRBs
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Star formation history, GRB accurate localization and NIR, X-
orimordial galaxies ray, Gamma-ray characterization, redshift

ELT TMT GMT

Neutral fraction of
IGM, ionizing
radiation escape
fraction

2=8.2 simulated ELT afterglow spectrum

Cosmic
chemical
evolution,

TRANSIENT HIGH ENERGY SKY AND EARLY UNIVERSE SURVEYOR
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* Independent measure of cosmic SFR at high-z
(possibly including pop-Ill stars)
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A statistical sample of high-z GRBs will give access to star formation in the
faintest galaxies, overcoming limits of current and future galaxy surveys

THESEUS Consortium 2021



* Detecting and studying primordial invisible galaxies

The proportion of GRB hosts below a given detection limit provides an estimate
of the fraction of star formation “hidden” in such faint galaxies
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* Shedding light on cosmic reionization
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Combination of massive star formation rate and ionizing escape
fraction will establish whether stellar radiation was sufficient to
reionize the universe, and indicate the galaxy populations responsible

THESEUS Consortium 2021



* Cosmic chemical evolution at high-z
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LIGO, Virgo, and partners make first detection of
gravitational waves and light from colliding neutron stars

Lightcurve from Fermi/GBM (50 — 300 keV)
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LIGO, Virgo, and partners make first detection of
gravitational waves and light from colliding neutron stars

Lightcurve from Fermi/GBM (50 — 300 keV)

THESEUS: T T
v short GRB detection | Fermi
over large FOV with ey ,1 T
arcmin localization |

v’ Kilonova detection,

Light curve peaks at 200 Mpc

arcsec localization
and
characterization

5

Fluz [erg/(s-cm?)]

v’ Possible detection
of weaker isotropic

X-ray emission



Future GRB missions: synergies

ENTERING THE GOLDEN ERA OF MULTI-MESSENGER ASTROPHYSICS

® decision/construction operation

Gravitational

2G waves

Synergy with future GW
and neutrino facilities will
enable transformational
investigations of lceCube-Gen2

multi-messenger
sources

3G

Neutrinos
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KM3NeT

THESEUS

2026 2028 2030 2032 2034 2036




Multi-messenger science with THESEUS

INDEPENDENT DETECTION & CHARACTERISATION OF THE MULTI-
MESSENGER SOURCES

Lessons from GRB170817A

Aligned

GRBs Misaligned
Expected rates:

THESEUS + 3G:
« ~50 aligned+misaligned short GRBs
* ~200 X-ray transients

Higher redshift events - X/y is likely
only route to EM detection: larger
statistical studies including source

evolution, probe of dark energy and test
modified gravity on cosmological scales




GRB: a key phenomenon for multi-messenger

astrophysics (and cosmology)
MEASURING THE EXPANSION RATE AND GEOMETRY OF SPACE-TIME
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GRB: a key phenomenon for multi-messenger

astrophysics (and cosmology)
MEASURING THE EXPANSION RATE AND GEOMETRY OF SPACE-TIME
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Multi-messenger cosmology through GRBs

MEASURING THE EXPANSION RATE AND GEOMETRY OF SPACE-TIME
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Measuring cosmological parameters with GRBs

» GRB nFn spectra typically show a peak at a characteristic photon
energy E,

» measured spectrum + measured redshift -> intrinsic peak enery and
radiated energy
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Measuring cosmological parameters with GRBs

 afraction of the extrinsic scatter of the E ;-E;;, correlation is indeed
due to the cosmological parameters used to compute E,__

(d Evidence, independent on other cosmological probes, that, if we
are in a flat ACDM universe, ), is lower than 1 and around 0.3
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Measuring cosmological parameters with GRBs

 afraction of the extrinsic scatter of the E ;-E;;, correlation is indeed
due to the cosmological parameters used to compute E,__

(d Evidence, independent on other cosmological probes, that, if we
are in a flat ACDM universe , €2,, is lower than 1 and around 0.3
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» Future GRB experiments (e.g., SVOM, HERMES, THESEUS, ...) and more
investigations (in particular: reliable estimates of jet angles and self-
calibration) will improve the significance and reliability of the results and
allow to go beyond SN la cosmology (e.g. investigation of dark energy)
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Fundamental physics with GRBs: testing LI / QG

1 Using time delay between low and high energy photons to put Limits on
Lorentz Invariance Violation (allowed by unprecedent Ferml GBM + LAT
broad energy band) =
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Fundamental physics with GRBs: GW vs. light

GW170817/GRB170817A, D ~ 40 Mpc
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In summary

** GRBs are a key phenomenon for cosmology (ealry Universe, cosmological
parameters), multi-messenger astrophysics (GW, neutrinos) and
fundamental physics

** Next generation GRB missions, like THESEUS, developed by a large
European collaboration and already studied by ESA (M5 Phase A) will fully
exploit these potentialities and will provide us with unprecedented clues
to GRB physics and sub-classes.

** THESEUS is a unique occasion for fully exploiting the European leadership
in time-domain and multi-messenger astrophysics and in related key-
enabling technologies

¢ THESEUS observations will impact on several fields of astrophysics,
cosmology and fundamental physics and will enhance importantly the
scientific return of next generation multi messenger (aLIGO/aVirgo, LISA,
ET, or Km3NET;) and e.m. facilities (e.g., LSST, E-ELT, SKA, CTA, ATHENA)

** THESEUS ESA/M5 Phase A study successful -> reproposed for M7 (2037)

SPIE articles on instruments, Adv.Sp.Res. & Exp.Astr. articles on science

http://www.isdc.unige.ch/theseus/




