

Run: 265545

Event: 1020606

2015-05-21 09:39:35 CEST

13 TeV collisions

Recent Heavy Flavour results from ATLAS

Umberto De Sanctis (INFN & Università Roma Tor Vergata) on behalf of the ATLAS Collaboration

ICFNP, 08/09/2022

- LHC & the ATLAS Detector
- > How ATLAS triggers Heavy Flavour events
- Recent Heavy Flavour ATLAS results
 - Search for Exotic states (see talk "ATLAS results on exotic hadronic resonances" by Ivan Yeletskikh's talk on Saturday)
 - Bc meson properties
 - CP-violation measurements
 - Rare decays and New Physics contributions (e.g. B- anomalies)

- ATLAS (A Toroidal LHC ApparatuS)
 - "The Physics Giant"
 - > 44x25 m, 7000 t
 - A multipurpose detector to find new particles and measure the properties of well-known particles

Integrated luminosities

- ATLAS collected data from 2010 to 2018 at a centre-of-mass energy $\sqrt{s} = 7,8$ and 13 TeV
 - ightharpoonup Run I (2010-2013) ightharpoonup 4.9 fb⁻¹ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV
 - ightharpoonup Run 2 (2015-2018) \rightarrow 139 fb⁻¹ @ 13 TeV

Typical B-physics signatures

- 5
- B-physics signatures at hadron colliders are mainly made by:
 - ightharpoonup Low transverse momentum (P_T) muons ightharpoonup Tracking system + muon system
 - \triangleright Tracks in the Inner detector \rightarrow Tracking system
 - ➤ Rarely photons/electrons → Electromagnetic calorimeter
- ightharpoonup Trigger these events is complicated due to low thresholds in muon $P_T \rightarrow$ Incompatible with bandwidth constraints at high lumin.
- ➤ In addition ATLAS (and CMS) does not have specific detectors for particle identification → Kaons, pions, protons are all "just" tracks

Triggering events in Run 1 and Run 2

 $\left(6\right)$

- ➤ Regional readout → Define a Region of Interest (RoI) around the L1 muons
 - ➤ Lower rate but less efficient for low-P_T
 - Primary trigger in most of Run1
- Run2 : Topological trigger!
- \triangleright Use info on PT, η and φ of the muon ROIs to build topological di-muon quantities (inv.mass or ΔR):
 - Efficient way to reduce bandwidth usage keeping the signal efficiency high
 - Figure 3 Gain up to a factor of 3 in dimuon background rejection!
 - Baseline for 2017 data (with MU4_MU6 and 2MU6 thresholds)

Bc/B+ production cross-section

7

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}$

Total fit

6600

Background

6800

 $m_{J/\psi\,\pi^\pm}$ [MeV]

Phys. Rev. D 104 (2021) 012010

500

Data - fit) / err.

6000

- ➤ Bc meson is the heaviest known meson
- Its dynamics are still under investigation
 - ➤ No data from B-factories

Università di Roma

Tor Vergata

This measurement compares its total and differential production cross-section w.r.t. the B[±]

 \triangleright Bc → J/Ψπ[±] vs B[±] → J/ΨK[±]

First hint of a dependence from PT of the Bc cross-section w.r.t.
 the B[±] one

- LHCb measured the ratio in the forward region \rightarrow Higher ratio

- CMS measured the inclusive ratio at 7 TeV in the same kinematical region → 30% higher value but still compatible with ATLAS ICFNP, 08/09/2022

$B^+c \rightarrow J/\Psi D^{(*)}s$

- The analysis focuses on the B⁺c decay to J/ $\Psi \rightarrow \mu\mu$ and D⁺s $\rightarrow \Phi\pi^+$ or D*+s $\rightarrow D^+$ s γ/π^0 where γ/π^0 are too soft and not reconstructed \rightarrow But a separation in the J/ Ψ D⁺s invariant mass still possible!
- ➤ Goals are:
 - \triangleright Measure the decay widths w.r.t. a reference channel: B⁺c \rightarrow J/ $\Psi\pi^+$
 - The decay in J/ $\Psi D^{*+}s$ is described by three helicity amplitudes \rightarrow measure their relative contribution and the J/ $\Psi D^{*+}s$ /J/ $\Psi D^{+}s$ ratio
 - > Compare with theoretical models available

JHEP 08 (2022) 087

Bc $\rightarrow J/\Psi D^{(*)}s$

- > Triggers used:
 - ➤ Di-muon/tri-muon triggers → Used to measure the ratios w.r.t. the ground state
 - Trigger based on the Bs $\rightarrow \mu\mu\Phi$ topology \rightarrow Used to measure the amplitudes ratio and the J/ Ψ D*+s /J/ Ψ D+s ratio
- \triangleright Muon PT threshold: 4,6 GeV; $P_T(B^+c) > 15$ GeV && $|η(B^+c)| < 2.0$
- To suppress the backgrounds:
 - Cuts on Lxy and longitudinal/transverse impact parameters
 - \triangleright Removal of the Bs \rightarrow J/ $\Psi\Phi$ contribution
 - > BDT against the combinatorial background
 - \triangleright «Cascade» fit for the J/ Ψ D⁺s decay (tertiary vertices)
- ➤ The ground state B⁺c → J/Ψπ⁺ reconstructed with the same cuts on muons and B⁺c and P_T(π⁺) > 3.5 GeV.
- ➤ Signal events ~ 8500

Bc $\rightarrow J/\Psi D^{(*)}s$

 \triangleright 2D fit on m(J/ Ψ Ds) and the J/ Ψ helicity angle cos(θ^*) to extract the signal parameters and the relative helicity amplitudes

- Comparison with several models on the market and with previous results by ATLAS and LHCb
- QCD PM model seems to better describe all ratios

CPV in Bs → J/ΨΦ

➤Interference between mixing and decay

Tor Vergata

$$\left(\varphi_s^{SM} \equiv -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{*}}{V_{cs}V_{*}}\right) = -0.04 \text{ rad}\right)$$

Small CPV phase in SM \rightarrow Ideal place for New-Physics!

- Essential ingredients at hadron colliders:
 - Good time (spatial) resolution to measure the oscillation accurately
 - Flavour tagging (i.e. distinguish the "Bs side" of the event)

Muons, electrons and jets used as taggers

ICFNP, 08/09/2022

Bs $\rightarrow J/\Psi\Phi$ measurement

- > Flavour tagging calibration done using $B^{\pm} \rightarrow J/\Psi K^{\pm}$
- ➤ Information on B[±] flavour extracted from the kaon charge
- Flavour tagging probability affect significantly the precision on the extraction of the parameters
- ➤ Total tagging power: 1.75%
- Angular analysis with 10 amplitude functions is done (J/ΨΦ is not a CP eigenstate!!)

Eur. Phys. J. C 81 (2021) 342

ICFNP, 08/09/2022

Extract the 10 parameters from a global simultaneous fit to the various

distributions (mass, angles, etc)

- Focus on three parameters:
 - $\succ \Gamma_s$ (decay width)
 - \triangleright $\Delta\Gamma_s$ (difference of the widths)
 - $\blacktriangleright \Phi_s$ (the CPV weak-phase)

Bs $\rightarrow J/\Psi\Phi$ measurement

- \triangleright Extract the 10 parameters from a global simultaneous fit to the various
 - distributions (mass, angles, etc)
- Focus on three parameters:
 - $\succ \Gamma_s$ (decay width)
 - $\triangleright \Delta\Gamma_s$ (difference of the widths)
 - $\blacktriangleright \Phi_s$ (the CPV weak-phase)

 Γ_s in tension with LHCb and CMS measurements

Bs, d → μμ BR measurement

- Rare but clean decay suppressed by FCNC in the SM
 - \Rightarrow BR(Bs \rightarrow µµ) = (3.66 ± 0.14) x10⁻⁹

JHEP 10 (2019) 232

- >BR(Bd $\rightarrow \mu\mu$) = (1.03 ± 0.05) ×10⁻¹⁰
- > Three suppression factors:
 - > FCNC processes forbidden at tree-level
 - \triangleright CKM elements (V_{ts}, V_{td})
 - \triangleright Helicity suppression (0-state going into two fermions)
- Sensitive to New Physics contributions through loops
- > Analysis strategy:

Hadronisation probabilities

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N(B_{(s)}^0 \to \mu^+ \mu^-) \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)\right] \times \frac{f_u}{f_{s/d}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

Number of Bs/Bd events from an unbinned ML fit to $m(\mu\mu)$ distribution

Reference channel: $B^{\pm} \rightarrow J/\psi K^{\pm}$ Extracted from an unbinned ML fit to $m(\mu\mu K^{\pm})$ distribution

Trigger categories and luminosity prescales* Acceptance and efficiencies from simulation.

$B_{s,d} \rightarrow \mu\mu$ BR measurement

- \triangleright BR extracted w.r.t to a well know high statistics reference channel (B[±] → J/ψK[±]) → reduce systematics
- Blind analysis
- High reduction and control of the backgrounds (both from fake muons and combinatorial)
- Simultaneous fit for the two channels in the di-muon invariant mass in 4 BDT regions (with different S/B ratio)

BR(Bs) = $2.8^{+0.8}_{-0.7} \times 10^{-9}$ (stat. ± syst.) BR(Bd) < 2.1×10^{-10} (95% CL)

ATLAS+CMS+LHCb combination

> Effort to combine the three measurements

ATL-CONF-2020-049

- First ATLAS+CMS+LHCb combination!
- \triangleright Effective B, $\rightarrow \mu\mu$ lifetime CMS+LHCB combination included
- Done with the 2015+2016 dataset
- Combination of the three likelihoods
 - Measurements dominated by the statistical uncertainty

Recent measurements on the full Run 2 dataset more compatible with SM:

$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left[3.83^{+0.38}_{-0.36} \; (stat) ^{+0.19}_{-0.16} (syst) ^{+0.14}_{-0.13} \left(f_s / f_u \right) \right] \times 10^{-9}, \qquad \text{CMS-PAS-BPH-2I-006} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left[0.37^{+0.75}_{-0.67} \; (stat) ^{+0.08}_{-0.09} (syst) \right] \times 10^{-10}. \end{split}$$

BR(B_s
$$\rightarrow \mu \mu$$
) = (3.09^{+0.46+0.15}_{-0.43-0.11}) ×10⁻⁹ (LHCb)

$$BR(B_d \rightarrow \mu \mu) = (< 2.6) \times 10^{-10} (LHCb)$$

Phys. Rev. Lett. 128, (2022) 041801

- Recent highlights in heavy flavour physics by ATLAS with Run 2 data have been shown
- The ATLAS programme in flavour physics is quite rich and cover a good portion of the most interesting topics in the domain
- ATLAS is competitive with LHCb (despite the different performance and environment) in few channels. Among them:
 - Search for some exotic state
 - Bc meson physics

Tor Vergata

- \triangleright CPV with the analysis of the Bs \rightarrow J/ $\Psi\Phi$ decay
- ightharpoonup Measurement of the BR(B_{s,d} $\rightarrow \mu\mu$) rare decay
- New measurements using the full Run I + Run 2 statistics are ongoing: stay tuned!

BACKUP

Di-charmonium events

- > Search for tetraquarks Tc made of only charm quarks
- In 2020 LHCb found:
 - \triangleright A narrow structure X(6900) in the di-J/ Ψ channel
 - ► A broad structure just above twice the J/Ψ mass
- \triangleright Look for confirmation in the di-J/ Ψ spectrum and for structures also above the J/ $\Psi\Psi(2S)$ threshold
- ➤ Analysis uses full Run 2 statistics (i.e. I40 fb-I)
- \triangleright Di-muon or 3 muons triggers (with J/ Ψ mass requirements)
- ➤ Offline muon P_T thresholds: 4, 4, 3, 3 GeV
- > Signal region:
 - $ightharpoonup m(4\mu) < 7.5$ GeV && Lxy < 0.2/0.3 && $\Delta R < 0.25$ between the two charmonium pairs
- > Control regions:
 - ightharpoonup SPS ightharpoonup 7.5 < m(4 μ) < 12 GeV
 - \rightarrow DPS \rightarrow 14 < m(4 μ) < 25 GeV
 - ► Non-prompt di-J/ Ψ → Poor quality 4 μ vertex + Lxy > 0.4 *ICFNP*, 08/09/2022

Science Bulletin 65 (2020) 1983

Di-charmonium events

- \triangleright Unbinned ML fit to the 4 μ mass distribution with m(4 μ) < 11 GeV and $\Delta R < 0.25$ (SR)/ $\Delta R > 0.25$ (CR)
- > Fit model: several interfering Breit-Wigner functions convoluted with Mass Resolution functions

di-J/Ψ model

$$f_s(x) = \left| \sum_{i=0}^{2} \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha)$$
 representing the amplitudes No interference with NRSPS (as

- z_i complex numbers
- in LCHb model)

I/Ψ+Ψ(2S) models:

Model A

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + i m_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

Parameters of the first three resonances are fixed to those extracted in the di-J/Ψ fit

Model B single resonance

Di-charmonium events

 $b\overline{b} \rightarrow J/\psi + \psi(2S) + X$

10 10.5

m_{4u}^{con} [GeV]

I/Ψ+Ψ(2s)

8.5

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Best fit:

- 3 resonances model
- Resonance at 6900 MeV compatible with LHCb
- Broad res. might be due to other effects

Best fit:

- 2 resonances model slighlty preferred with one resonance at 6900 MeV
- Stat. Significance 4.6σ
- Hint for a resonance at 7.2
 GeV (need confirmation)

Istituto Nazionale di Fisica Nucleare

30

20

10

CMS confirmed a resonance around 6900 MeV + 2 other resonances → Need to unify the model description among the 3 experiments! ICFNP, 08/09/2022

Table 3: The fitted masses and natural widths (in GeV) of the interfering resonances in the di- J/ψ and $J/\psi+\psi(2S)$ channels. The results of both model A and B are given for $J/\psi+\psi(2S)$. The first errors in each value are statistical while the second ones are systematic.

(GeV)	m_0	Γ_0	m_1	Γ_1
$\mathrm{di} ext{-}J/\psi$	$6.22 \pm 0.05^{+0.04}_{-0.05}$	$0.31 \pm 0.12^{+0.07}_{-0.08}$	$6.62 \pm 0.03^{+0.02}_{-0.01}$	$0.31 \pm 0.09^{+0.06}_{-0.11}$
	m_2	Γ_2	_	
	$6.87 \pm 0.03^{+0.06}_{-0.01}$	$0.12 \pm 0.04^{+0.03}_{-0.01}$	<u> </u>	
(GeV)		m_3	Γ_3	
$J/\psi + \psi(2S)$	model A	$7.22 \pm 0.03^{+0.02}_{-0.03}$	$0.10^{+0.13+0.06}_{-0.07-0.05}$	_
	model B	$6.78 \pm 0.36^{+0.35}_{-0.54}$	$0.39 \pm 0.11^{+0.11}_{-0.07}$	

W+J/Y associated production

- Interesting to study the QCD at the border between perturbative and non-perturbative regimes.
- \triangleright W+J/ Ψ can be produced via two mechanisms:
 - > SPS (Single Parton Scattering)
 - > DPS (Double Parton Scattering)
- \triangleright The J/ Ψ is reconstructed in the di-muon decay while the W in its leptonic decay (electron/muon)

> SPS contribution extracted from data after subtracting the DPS

(uncorrelated) component

Università di Roma

Tor Vergata

Charmonium differential cross-section

- \triangleright 1st full Run2 analysis: measurement of the J/ ψ and ψ (2s) x-sec
 - \triangleright Differential in P_T and y; focus on high-P_T region: \gt 60 GeV
 - ➤ Single muon trigger: HLT_mu50

ATLAS-CONF-2019-047

> Pseudo proper lifetime fit to separate prompt component

R(K*) in ATLAS ??

- Target $B \rightarrow K^{(\star)}ee$
- L1 triggers: new topological triggers which look for a pair of soft electrons with low mass, or a soft "jet" near an electron (the jet assumed to combine two electrons)
 - to reduce rates also require additional muons from other B hadrons in event
- Software HLT dielectron low-mass triggers:
 - some seeded by the L1 topological triggers
 - also triggers that look at **all** events accepted by the L1 – very powerful
- Deployed mid-2018, ran for $\sim 40 \text{ fb}^{-1}$

