DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE

1

Optimal control of a radiation pressure limited opto-mechanical resonator

Laura Giacoppo

11th International Conference on New Frontiers in Physics (ICNFP 2022)

Crete, 9 September 2022

Opto-mechanical resonator mechanical design: SIPS experiment

Dm=3'', **300g End**: **Dm=1''**, **10 g**

They can be suspended with a monolithic Virgo-like technique for thermal noise reduction

Minipayload: Monolithic suspension system of the main optics Input and BS: (2 fused silica fibers of 50μm)

Local control of suspended elements with dummy mirrors: status of art

Active control system for alignment and damping of mirror suspension resonance peaks and to recover longitudinal and marionette's angular local positions of the mirror.

- Actuation system: 4 Coil-magnet actuators for each mirror and marionette.
- **y x Ɵz** Readout system \rightarrow *Optical Levers* setup of 2 SLED + 3PSDs (ground-based): PSD1→mirror focal plane PSD2→mirror image plane PSD3→marionette focal plane

L Giacoppo et al 2021 Phys. Scr. 96 114007

This allows angular and linear control within an accuracy of 10 nrad and 0.1 µm RMS.

Local control digital system: status of art

➢ **Improvement of mechanical design of the suspension system:**

I) *New Monolithic Suspensions*

Old design:

- Two suspension fibers (one for each flat side).

- Ear-anchor system and ear-flat mirror surface silica bonding (Advanced Virgo like)

New design:

- Four suspension fibers, bonded to flat part of the mirrors - New geometry for the bonding between mirror and fibers (in progress).

II) New Marionette design

- implementation of two more coil-magnet systems for the actuation to improve the control of θ_x and θ_y degrees of freedom.

- presence of a $SiO₂$ block, as a component of the new monolithic suspension system, with two $SiO₂$ fibers attached on each side of it.

➢ **Engineering control problem approach:**

❑ Problem: control of **coupled dynamical systems** → Develop a model for the interaction between mirrors and wave field of the laser;

❑ Mathematical approach, **Pontryagin control equations** → complete control of all the optical elements, simultaneously, to optimize the performance of the system;

• We first develop a **nonlinear theory** of the scattering phenomenon describing the expression for the **radiation pressure** acting on a body moving in the wave field by using **Hamilton's variational principle**.

- The model presented uses the **equations of the wave field coupled with the resonator** (end mirror) **by the boundary conditions**
- The final expressions of the wave field and the resonator motion $u(t)$ are determined.

- We examine the **one dimensional** problem of a light beam impinging on a dielectric mirror with surface *S*, and mass *m*, connected to a spring of stiffness *k*.
- \blacksquare introducing the scalar φ and vector potential A for the electric and magnetic field, E and B respectively: $\mathbf{E} = -\nabla \varphi - \mathbf{A}_t$ $\mathbf{B} = \nabla \times \mathbf{A}$

▪ *Variational principle approach:*

$$
\begin{aligned}\n\text{O} \quad L_{mech} &= \frac{1}{2} m \dot{u}^2 - \frac{1}{2} k u^2 \\
\text{O} \quad \mathcal{L}_{em} &= \frac{1}{\mu_0} |\mathbf{B}|^2 - \varepsilon_0 |\mathbf{E}|^2 = \\
\frac{1}{\mu_0} |\nabla \times \mathbf{A}|^2 - \varepsilon_0 |\nabla \varphi + \mathbf{A}_t|^2\n\end{aligned}
$$

o Total Action of system:

$$
\mathcal{A}_{tot} = \mathcal{A}_{mech}(u, \dot{u}) + \mathcal{A}_{em}(\varphi_x, A_t, A_x)
$$

= $S \int_{t_1}^{t_2} \left\{ \frac{1}{2} m \dot{u}^2(t) - \frac{1}{2} k u^2(t) + \left(\int_u^l \mathcal{L}_{em} dx \right) \right\} dt$

 $=-\int$ t_1 t_{2} $m \ddot u(t) + k \, u(t) + S[\mathcal{L}_{em}]_u \} \delta u \, dt$ $+ S \mid$ t_1 $t₂$ $\overline{1}$ \overline{u} \boldsymbol{l} $2\varepsilon_0(\varphi_{xx} + A_{x,xt})\delta\varphi + 2\varepsilon_0(\varphi_{xt} + A_{x,tt})\delta A_x + 2\varepsilon_0 A_{y,tt} +$ $2\varepsilon_0 A_{z,tt}$ – $-A_{z,xx}$ δA_z 2 μ_{0} $A_{\mathcal{Y},\mathcal{X}\mathcal{X}}\bigm|\delta A_{\mathcal{Y}}$ 2 μ_{0} $A_{Z,\chi\chi}$ $\left|\,\delta A_Z\right| dx\,dt$ $+$ $\vert S \vert$ t_2 (2) μ_{0} $A_{y,x} \delta A_y \big|_u^b$ \boldsymbol{l} + 2 μ_{0} $A_{Z,X} \delta A_Z \big|_{u}^v$ \boldsymbol{l} $-2\varepsilon_0 \left[(\varphi_x + A_{x,t}) \delta \varphi \right]_u^t$ $\mathfrak l$ dt $A(x, t)$ m, S $\boldsymbol{\varphi}(\mathbf{x},t)$ *k u(t)* o Assuming the only non-zero derivatives are those with respect to the x propagation axis, the 1-D case simplifies as: $|\mathbf{E}|^2 = (\varphi_x + A_{x,t})^2$ $+$ $(A_{y,t}$ 2 $+$ $(A_{z,t}$ 2 $|\bm{B}|^2 = (A_{y,x})^2 + (A_{z,x})^2$ 2 $\left(1\right)^2$ x o According to variational principle: $\delta A_{tot} = 0$ \triangleright we compute the variations δu , $\delta \varphi$, δA_x , δA_y , δA_z **Boundary terms**

 t_1

2. boundary conditions

$$
\begin{cases}\n(\varphi_x + A_{x,t}) \delta \varphi \Big|_{u} = 0 \\
A_{y,x} \delta A_y \Big|_{u} = 0 \\
A_{z,x} \delta A_z \Big|_{u} = 0\n\end{cases}
$$

3. mirror equation of motion

$$
m\ddot{u} + ku = \mathcal{L}\Big|_{u}
$$

= $S \Big\{ \frac{1}{\mu_0} \Big[\big(A_{y,x} \big)^2 + \big(A_{z,x} \big)^2 \Big] - \varepsilon_0 \Big[\big(\varphi_x + A_{x,t} \big)^2 + \big(A_{y,t} \big)^2 + \big(A_{z,t} \big)^2 \Big] \Big\}\Big|_{u}$

➢ we can **find the wave solution** in the general propagation D'Alembert form, for the *local non-*

$$
\begin{aligned}\n\text{resonant coupling model:} \quad & \varphi(x, t) = \boxed{\varphi_i(x + ct)} + \boxed{\varphi_r(x - ct)} \\
& A_y(x, t) = \boxed{A_{yi}(x + ct)} + \boxed{A_{yr}(x - ct)} \\
& A_z(x, t) = \boxed{A_{zi}(x + ct)} + \boxed{A_{zr}(x - ct)}\n\end{aligned}
$$

unknown

known

 \triangleright and we can **solve** *reflection problem*, calculating in terms of the four unknowns φ_r , A_{yr} , A_{zr} , u , by

solving the system:
\n
$$
\begin{cases}\nmi + ku = S \left\{ \frac{1}{\mu_0} \left[\left(A_{y,x} \right)^2 + \left(A_{z,x} \right)^2 \right] - \varepsilon_0 \left[\left(\varphi_x + A_{x,t} \right)^2 + \left(A_{y,t} \right)^2 + \left(A_{z,t} \right)^2 \right] \right\}_u \\
\left. \left(\varphi_x + A_{x,t} \right) \delta \varphi \right|_u = 0 \\
A_{y,x} \delta A_y \Big|_u = 0 \\
A_{z,x} \delta A_z \Big|_u = 0\n\end{cases}
$$

 \triangleright this can be manipulated to both permits the theoretical analysis of the opto-mechanical coupling and to be useful for *numerical simulations* and to *tune an optimal control technique* \rightarrow ongoing work. 11

Optimization of SIPS control: Pontryagin's approach for control technique

From analytical model \rightarrow *nonlinear optomechanical coupling* \rightarrow spurious frequencies in the reflected light spectrum (treated analytically in another work, compared with acoustic case)

Pontryagin's maximum principle

allows finding efficient control equations for complex systems like

SIPS case, based on wave models close to boundaries (mirrors)

 \rightarrow more complicated approach with respect to those techniques that make direct use of the transfer function, but it gives more accurate results from the point of view of the system response to control actuation.

Optimization of SIPS control: Pontryagin's approach for control technique

(i.e. control force applied to the mirror)

➢ transform a partial derivative system into an ordinal differential equation system:

$$
\underline{\dot{x}} = A\underline{x} + B\underline{f_c}(\underline{s})
$$

 \triangleright define a criterion for the choice of the function $f_c(\underline{s})$, where $\underline{s} = G\underline{x}$ represents vector of signal from the sensors

Optimization of SIPS control: Pontryagin's approach for control technique

$$
\triangleright \text{ build a suitable } objective \text{ function:} \quad J = \int_0^T Qu^2 + Rf_c^2 \, dt
$$

² *control force* applied to \rightarrow the mirror, operated by coil-magnet pairs

 \triangleright introducing a *modified functional* \tilde{I} , adding a constrain:

 $\tilde{J}(\underline{x}, \underline{f_c}, \underline{\lambda}) = \int_0^T$ \overline{T} $\mathcal{L} + \underline{\lambda}^T \left(\dot{\underline{x}} - A \underline{x} - B f_c \right) \mid dt$, with $\underline{\lambda} = \underline{\lambda}(t)$

 \triangleright f_c must satisfy $\delta J \rightarrow 0$, using the method of *Lagrange multipliers* \rightarrow find the *independent variables* \underline{x} (t), f_c , $\underline{\lambda}$ (t) (easly obtained analytically) \rightarrow simultaneously obtain all the components of f_c

→ Obtain a **simultaneous integrated feedback control**

→ Ensure the system **stability**

Conclusions and next developments

- 1. Finalize theoretical analysis of the opto-mechanical coupling \rightarrow *numerical simulations*
- 2. Analyze signals from $PSDs \rightarrow Empirical Mode Decomposition technique: allows to$ identify the signal components, in order to find and classify possible non-linearities of the system, based on analytical model developed
- 3. Start from the described mathematical approach, defining the requirements for the *Objective function J*, which better represents the desired system performance
- 4. Apply Pontryagin's approach, together with an extended Kalman's filter, and using the new FLOP technique, to be able to produce the desired feedback→ *optimize the performance of SIPS*
- 5. SIPS represents a suitable test bench for the new proposed optimal control technique, with also the outlook on a possible application in GW interferometer.

THANKS FOR

YOUR

ATTENTION