Highlights from ATLAS

On behalf of the ATLAS collaboration

Bill Murray, Warwick University / STFC-RAL Crete 5th Sept 2022

Dikteon cave, birthplace of Zeus, ATLAS' cousin

The ATLAS detector at LHC

A 'general purpose' detector

- 1% measurement of muon momentum and electron energy
- Excellent calorimetry for jet energy and missing energy
- Triggering on muons, electrons, photons and jets

Run 3 is here

 $\label{eq:constraint} \begin{array}{c} Z \rightarrow \mu^+\mu^- \mbox{ Candidate} \\ \mbox{Invariant Mass: 91.01 GeV/c}^2 \end{array}$

Run: 427394 Event: 21060879 2022-07-05 19:04:33 CEST

ATLAS physics overview

•LHC is a general purpose collider

- pp collisions allow many possibilities
- ATLAS physics programme is very broad: 1085 papers

Title	Papers	Description
Standard Model	199	EW & QCD studies: W & Z bosons
Higgs	153	Studies of the H(125)
Тор	126	Top quark studies
B physics	35	B hadron studies and light states
Heavy Ion	78	Collective effects, strong EM field
SUSY	161	Searches for Supersymmetry
Exotics	216	Other searches
HDBS	23	Searches: Exotic H decay, new H, HH, VV, VH (V=W,Z)

Alternative view: this meeting

Run 3 performance – Pawel Klimek
10 years of Higgs – Brian Moser
Recent Searches – Eirik Gramstad
Top quark physics – Peter Berta
Rare top – Chenliang Wang
ATLAS upgrades – Geoffrey Mullier
Dark matter search – Alex Wang
Prompt SUSY – ShuHui Huang
W/Z/top tagging – Qibin Liu
3rd generation searches

Science and

Technology Facilities Council

– Meng-lu Tsai

Recent Higgs – Soshi Tsuno
Higgs mass/width/CP – Brian Le
Higgs couplings – Georges Aad
Higgs pairs – Alessandr Betti
Higgs fiducial/differential

– Yasuyuki Horii

Additional Higgs bosons – Noemi Cavalli

- Top precision measurements Adam Rennie
- Run 3 data results Stefano Rosati
- ATLAS new small wheels Lorne Levinson
- •JET/MET performance Romain Bouquet
- Heavy Ion results Martin Spousta
- Heavy Flavour results Unberto de Sanctis
- Challenging/LLP searches Maria Didenko
- Photons/Multijets Josu Cantero Garcia
- ATLAS demographics tbd
 - SUSY with prompt ShuHui Huang
 - SUSY with LLPs Kock Kiam Gan
 - Exotic Hadronic Ivan Yeletskikh
 - Photon fusion and tau g-2 Haifeng Li

Technology Facilities Council

W. Murray 6

W. Murray 7

Trigger system

- Key to all physics at LHC
 Reducing 40 MHz collisions to order(few KHz)
 - Adapting to LHC luminosity
- One fill in 2018 shown
 - Main physics dominates bandwidth
 - e/µ p_T>27 GeV, 2x~200Hz
 - τ pair, p_T>35/25 GeV, 100Hz
 - Jet, p_T>460 GeV, 40Hz
 - MET > 110 GeV, 90Hz
- Trigger-level analyses have highest rate
 95.6% DQ eff. in Run 2

W. Murray 8

Performance

Performance and modelling

Efficiency high, with limited pileup impact

Design μ

Excellent MC Modelling
 Correction factors measured

in data are applied; generally close to 1

Standard Model Production Cross Section Measurements

Status: February 2022

W. Murray 12

STDM-2018-08

Total pp cross-section

ALFA subdetector

- Scintillating fibres close to the beam
- 240m forward and backward
- •Run with $\beta^* = 2.5$ km
- Measure mandelstam 't' distribution
- Extract cross-section using optical theorem •Find: σ=104.7±1.1mb Most precise, limited by lumi •Also ρ=0.0975±0.0106
 - Ratio Re f(0)/ Im f(0)

Z with jets

STDM-2018-49

Science and Technology Facilities Council

W. Murray 14

Higgs boson: 10 years on

•The defining discovery of the LHC •Decays to ZZ, $\gamma\gamma$, WW, $\tau\tau$, bb: all observed at 5σ •Same for ggH, VBF, VH and ttH production

W. Murray 16

160

H to ZZ & mass HIGG-2020-07

Science and

Technology Facilities Council

W. Murray 18

H to yy VBF HIGG-2020-08

H to tt decay ATLAS-CONF-2022-032

 Decay angles sensitive to CP coupling to fermions
 Constrains mixing phase as 9±16°

 Data gave unusually good error

W. Murray 20

H to µµ

Phys. Lett. B 812 (2021) 135980

Simple' bump hunt
20 categories of p_T, eta, VBF. VH, ttH
Approach like γγ, but:
10 times lower rate

large Drell-Yan bckd.

Significance: 2σ obs (1.7σ exp. SM) Statistics dominated

• 2nd generation in sight!

W. Murray 21

Interactions with all particles?

- Interaction should scale with mass
 Confirmed for vector bosons and all 3rd generation fermions
 - Save $v_{\tau}!$
- 2nd generation fermions now being constrained too

Top cross-section @ 5 TeV TOPQ-2018-40

•5.02 TeV data

- Collected as PbPb reference
- II and I+jets channels
- $\sigma tt = 67.5 \pm 0.9(\text{stat.}) \pm 2.3 \text{ (syst.)} \pm 1.1(\text{lumi.}) \pm 0.2 \text{ (beam) pb}$

Good agreement with expectations to 4% precision
Similar to 13 TeV
Allows theory comparison across wide energy range

B fragmentation in tt TOPQ-2018-40

- Use top as source of high-p⊤ b quarks
 - Analyse using charged tracks
 - Plot z_{L,b}, p_T fraction coming from secondary vertex
- Unfold to particle levelComparison between simulations
 - interesting
 - Generally in agreement
- Complementary to LEP Z → bb as here b are colour connected to the beam remnant

Single Top plus photon ATLAS-CONF-2022-013

Science and

Technology Facilities Council

tt charge asymmetry TOPQ-2020-06

$$A_{\rm C}^{t\bar{t}} = \frac{N(\Delta|y_{t\bar{t}}| > 0) - N(\Delta|y_{t\bar{t}}| < 0)}{N(\Delta|y_{t\bar{t}}| > 0) + N(\Delta|y_{t\bar{t}}| < 0)},$$

 Symmetric at LO, but at NLO qq and qg asymmetries appear

Inc.: A_c=0.0068± 0.0015,
 4.7σ from zero

Run 2 Top mass in Ibb ATLAS-CONF-2022-058

 m_{top}=172.63 ± 0.20 (stat) ± 0.67 (syst) ±0.37 (recoil) GeV
 Recoil uncertainty (Brooks and Skands) new
 Matches 172.69 ± 0.48 GeV ATLAS Run 1 combination & 36fb-1 13 TeV 174.41± 0.39 (stat) ± 0.66 (syst) ±0.25 (recoil) GeV II
 c/f 171.77 ± 0.38 GeV recent CMS (see J Fernandez talk)

Other new top

tbdtbd TOPQ-2020-06

- •S channel top at 13 TeV (CONF conversion):
 - ATLAS-CONF-2022-030
- •ttγ charge asymmetry
 - ATLAS-CONF-2022-049
- •15th international workshop on top physics
 - Talks start this afternoon; links below will soon become active
 - ttW charge-asymmetry: ATLAS-CONF-2022-062
 - Differential tt → eµ cross-section: ATLAS-CONF-2022-061
 - And more likely

Technology Facilities Council

W. Murray 29

Di charmonium in 4µ states ATLAS-CONF-2022-040

Find prompt 4µ events, p_T>3,3,4,4GeV

- J/ψ+J/ψ or J/ψ+ψ(2s)
- ΔR<0.25 between charmonia
- •J/ψ+J/ψ Analysis:
 - Single PS Background from MC
 - Excesses for mass below 7.5 GeV
 - 6.9 GeV peak seen also by LHCb
 - Broad lower mass structure best fitted with two more peaks, detail unclear
- •J/ ψ + ψ (2s) also show a 6.9 GeV peak
 - bump at 7.2 GeV

Also seen by LHCb & CMS in ψψ

Flow decorrelations ATLAS-CONF-2022-020/

 Collective flow moments defined relative to the event plane in pp (left) and Xe+Xe (right)

- F₁ independent of multiplicity
- F₂, evaluated different ways, shows decreasing trend
 Xe+Xe and pp show similar behaviour

No jet quenching in p+Pb?HION-2021-17

- •The expansion of quark-gluon plasma droplets describes collective effects in Heavy ion, p+Pb and p+p.
- Here per-jet charged particle yields are compared:
 - Yield N_{ch}(p+Pb) / N_{ch}(p+p)
 - For p_T>4 GeV there is no centrality dependence
- In contrast to Pb+Pb
 This precludes almost any parton energy loss in p+Pb

W. Murray 34

 $\gamma \rightarrow TT$ STDM-2019-19

- PbPb ultraperipheral collisions provide intense EM fields
 - Allows clean $\gamma\gamma \rightarrow \tau\tau$
 - Set constraints on a_τ similar to LEP

Gluino-neutralino limits ATL-PHYS-PUB-2022-013

 Simplified models put bounds at 1 and 2 TeV on neutralino and gluino respectively

W. Murray 37

Electroweak SUSY

ATL-PHYS-PUB-2022-013

 Smuon limits overlayed
 Compare with regions favoured by muon g-2

W. Murray 38

Long lived SUSY SUSY-2018-42

 Wide variety of displaced SUSY searches e.g. Massive long-lived particles are slow Highly ionising Look for high MET events with high-p_T tracks dE/dx > 2.4 MeVg⁻¹cm² Small excess seen 3.6σ for 1.4 TeV signal But not confirmed by timing

in calo./muons

$Z \to e \mu \ \textit{/} \ l \tau \ search$

EXOT-2018-35

EXOT-2020-28

 Charged lepton flavour violating Z
to eµ search
 Use BDT to isolate signal
•Do a bump hunt.
•Upper limit $B(Z \rightarrow e\mu) < 2.62 \times 10^{-7}$
 Tightest limit to date

0	bserved (expected) upper lin	mit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]	
Final state, polarization assumption	e au	μau	•Also $Z \rightarrow IT$
$\ell \tau_{\text{had}}$ Run 1 + Run 2, unpolarized τ	8.1 (8.1)	9.5 (6.1)	limite
$\ell \tau_{\rm had}$ Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)	IIIIIIS
$\ell \tau_{\rm had}$ Run 2, right-handed τ	7.8 (7.6)	10 (5.8)	eΔll stat
$\ell \tau_{\ell'}$ Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)	
$\ell \tau_{\ell'}$ Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)	dominated
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4 (11)	9.8 (13)	
Combined $\ell \tau$ Run 1 + Run 2, unpolarized τ	5.0 (6.0)	6.5 (5.3)	ed a set a set
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)	
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)	

Scalar leptoquark in btt ATLAS-CONF-2022-037

Model assumes q=4/3e Inspired by LFV hints from b decays Taus sought in lep-had and had-had configurations Later dominates, show right. No evidence for signal Single or pair produced Combined: leptoquarks below 1.26 TeV excluded for a Yukawa coupling of 1 Broad programme

see ATL-PHYS-PUB-2022-012

Dark matter

ATL-PHYS-PUB-2022-036/

Missing energy and resonance searches can be used to limit specific DM models.
Here lepto-phobic vector mediator model used
Will be much more instructive when we see signals!

Heavy resonance searches

A	TLAS Heavy Pa	rticle	Searc	che	s* - 9	5% CL U	pper Exc	usion Li	mits		ATLA	S Preliminar
St	atus: July 2022									$\int \mathcal{L} dt = (3)$.6 – 139) fb⁻¹	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	E_{T}^{miss}	∫£ dt[ft	p ⁻¹]	Limi	t		-		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j -2j $\geq 3j$ -2j/1J $\geq 1 b, \geq 1J/2$ $\geq 2 b, \geq 3j$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	М _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass g _{KK} mass		1.4	4.5 TeV 2.3 TeV 2.0 TeV 3.8 TeV 3 TeV	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV		2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to t\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu q\ell \text{ model } E \\ \text{HVT } W' \to WZ \to \ell\nu \ell\ell' \text{ model } E \\ \text{HVT } W' \to ZH \to \ell\ell\nu bb \text{ model } E \\ \text{HVT } W' \to H \to \ell\ell \mu \nu bb \text{ model } E \\ \text{HVT } W' \to H \to \ell\ell \mu \nu bb \text{ model } E \\ \text{HVT } W \to ZH \to \ell\ell \mu \mu b \\ \text{HSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ B \\ 1 \ e, \mu \\ B \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 J - 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 1-2 b, 1-0 1 J	- Yes Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass Z' mass Z' mass	340 GeV		5.1 Te 2.42 TeV 2.1 TeV 4.1 TeV 6.0 5.0 Te 4.4 TeV 4.3 TeV 3.3 TeV 3.2 TeV 5.0 Te	V TeV V	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.056.09 ATLAS-CONF-2021-025 ATLAS-CONF-2021-032 2004.14636 ATLAS-CONF-2022-05 HDBS-2020-19 HDBS-2020-19 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.	3 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ 1) 0 e, μ multi-channe	1 – 4 j 1 – 4 j 2 b el	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}	376 GeV 560 (àeV	2.1 TeV 3.1 TeV		$\begin{array}{l} g_q = 0.25, g_{\chi} = 1, m(\chi) = 1 \mathrm{GeV} \\ g_q = 1, g_{\chi} = 1, m(\chi) = 1 \mathrm{GeV} \\ \tan\beta = 1, g_Z = 0.8, m(\chi) = 100 \mathrm{GeV} \\ \tan\beta = 1, g_{\chi} = 1, m(\chi) = 10 \mathrm{GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LG 3 rd gen Scalar LG 3 rd gen Scalar LG 3 rd gen Scalar LG 3 rd gen Vector LG 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 \tau 0 e, \mu, \ge 1 \tau 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j, \geq 2 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass		1.: 1.7 1.2 TeV 1.24 TeV 1.43 Te 1.26 TeV 1.26 TeV 1.7	3 TeV TeV V 7 TeV		$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_{0}^{\mathrm{v}}\rightarrow\mathrm{br})=1\\ \mathcal{B}(\mathrm{LQ}_{0}^{\mathrm{v}}\rightarrow\mathrm{tr})=1\\ \mathcal{B}(\mathrm{LQ}_{0}^{\mathrm{v}}\rightarrow\mathrm{tr})=1\\ \mathcal{B}(\mathrm{LQ}_{0}^{\mathrm{v}}\rightarrow\mathrm{br})=1\\ \mathcal{B}(\mathrm{LQ}_{0}^{\mathrm{v}}\rightarrow\mathrm{br})=0.5, \mathrm{YM}\mathrm{coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Vector-like fermions	$ \begin{array}{l} VLQ\;TT \rightarrow Zt + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3} \;T_{5/3} \rightarrow Wt + X \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;Y \rightarrow Wb \\ VLQ\;B \rightarrow Hb \\ VLL\;\tau' \rightarrow Z\tau/H\tau \end{array} $	$2e/2\mu/\geq 3e,\mu$ multi-channe $2(SS)/\geq 3e,\mu$ $1e,\mu$ $1e,\mu$ $0e,\mu$ multi-channe	$\begin{array}{l} \mu \geq 1 \text{ b, } \geq 1 \text{ j} \\ \mu \geq 1 \text{ b, } \geq 1 \text{ j} \\ \mu \geq 1 \text{ b, } \geq 3 \text{ j} \\ \geq 1 \text{ b, } \geq 1 \text{ j} \\ \geq 2 \text{ b, } \geq 1 \text{ j, } \geq \\ 2 \text{ b, } \geq 1 \text{ j, } \geq \\ \eta \geq 1 \text{ j} \end{array}$	- Yes Yes IJ - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass		1.4 Te 1.34 TeV 1.64 1.4 1.8 898 GeV	/ 3 TeV 5 TeV 2.0 TeV		$\begin{array}{l} \mathrm{SU}(2) \ \mathrm{doublet} \\ \mathrm{SU}(2) \ \mathrm{doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ \mathrm{SU}(2) \ \mathrm{singlet}, \ \kappa_T = 0.5 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_{\kappa}(Wb) = 1 \\ \mathrm{SU}(2) \ \mathrm{doublet}, \ \kappa_B = 0.3 \\ \mathrm{SU}(2) \ \mathrm{doublet} \\ \mathrm{SU}(2) \ \mathrm{doublet} \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 EXOT-2020-07
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j –		139 36.7 36.1 20.3 20.3	q [°] mass q [°] mass b [•] mass ℓ [•] mass ν [•] mass		1.6 1	6 5.3 To 2.6 TeV 3.0 TeV FeV	eV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, μ 2 μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS 3 e, μ, τ –	≥2 j 2 j S) various S) – – –	Yes - Yes - - -	139 36.1 139 139 20.3 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particl monopole mass	350 GeV 400 GeV le mass	910 GeV 1.08 TeV 1.59 T	3.2 TeV eV 2.37 TeV		$\begin{split} m(W_{\mathcal{R}}) &= 4.1 \text{TeV}, g_L = g_{\mathcal{R}} \\ DY \text{production} \\ DY \text{production} \\ DY \text{production}, \mathcal{B}(H_{l}^{\text{iss}} \to \ell \tau) = 1 \\ DY \text{production}, g = 5e \\ DY \text{production}, g = 1g_D, \text{spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
	$\sqrt{s} = 8 \text{ TeV}$ \sqrt{s}	= 13 TeV rtial data	√s = 13 full d	3 TeV ata		10 ⁻¹		1		10	Mass scale [TeV]	1

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

W. Murray 44

Z or H to $(J/\psi + y)$ or (Y + y) arxiv 2208.03122

Decays to quarkonia sensitive to the Hcc / Hbb coupling
But also to Vector Meson Dominance production
Data-driven background model describe data well
Limits set here

Н		q q q q	Q H γ		q v v	P q V Y
Events / 2.5 GeV	70 60 50 40 30 10		ATLA $\sqrt{s}=13$ 2.9 < m + Dat Bac Exc $$ $\psi(n)$ Dim $B(H)$ $B(Z)$	S TeV, 139 f $η_{\mu^+\mu^-} < 3.3$ (a skground F slusive Bac S) Backgr huon Backgr 1 → J/ψγ) =	b^{-1} GeV it kground ground = 2.1 × 10 ⁻⁴ = 1.2 × 10 ⁻⁶	
Data/Bkgd	1.5 1 0.5 50				250 muture [C	300 300

					ALL DATE OF A DESCRIPTION OF A DESCRIPTI	the operation of the second seco						
	95% CL _s upper limits											
		Branchin	g fraction	$\sigma \times \mathcal{B}$								
Decay	Higgs bose	on [10 ⁻⁴]	Z boson	[10 ⁻⁶]	Higgs boson [fb]	Z boson [fb]						
channel	Expected	Observed	Expected	Observed	Observed	Observed						
$J/\psi\gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71						
$\psi(2S) \gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135						
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59						
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71						
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135						

Generic 2HDM

ATLAS-CONF-2022-039

Allows flavour violation e.g. 3rd generation uu → tt !!

•Scan ρ_{tt} , ρ_{tc} , ρ_{tu} couplings •and heavy Higgs masses 200 GeV < m_H < 1000 GeV •largest deviation 2.8 σ local • ρ_{tt} =0.32, ρ_{tc} =0.05, ρ_{tu} =0.85 • m_H =1000

Science and Technology Facilities Council

Di-Higgs production

•Interference between paths destructive for both • κ_{λ} scales coupling, SM=1. Affects both modes,

• Interplay with κ_t in ggF, κ_V and κ_{2V} in VBF m(HH) spectrum depends on κ_{λ} , κ_{2V}

W. Murray 48

Combined HH ATLAS-CONF-2022-050

Limit on HH production at 2.4 x SM strength
c/f 2.9 expected (no HH) or 4.0 (SM)

W. Murray 49

κ_λ from H and HH ATLAS-CONF-2022-050

• κ_{λ} restricted to -1.3 – 6.1 (-2.1 – 7.6 expected)

- Tightest constraint on κ_{λ} so far
- •Range shrinks slightly, if κ_V , κ_t , κ_b , κ_τ all fixed
 - Because they are constrained by single H data

The future

ATLAS is using 139fb⁻¹ @ 13TeV for most results Run 3 may bring 300fb⁻¹ @ 13.6 TeV HL-LHC will bring an order of magnitude more

As well as increasing experimental challenges

W. Murray 52

Upgrade Example: Inner tracker

Tracker rebuild to handle radiation & tracks density

ITk features

- All silicon (fast) layout
 5 pixel, 4 strip
- Higher granularity
 Reduced occupancy
- Improved radiation handling
- Extended coverage
 - |η| limit 2.5 → 4

Maintains or improves performance despite pileup
The build schedule is tight but doable for 2029

Science and Technology Facilities Council

Example HL-LHC sensitivity to \kappa_{\lambda}

Baseline projection red

- 1% lumi
- Theory errors halved
- Expt 1/√L
- •0<κ_λ<2.7
- Combining bbττ and bbγγ only
 Experiments can combine

Expectations: exceeded

Outlook

Broad Physics programmeOver 1000 papers published

- With many more to come from Run 2
- While Run 3 data is already on us
- No one knows what discoveries they will bring
 - But diHiggs sensitivity is approaching fast

•ATLAS is a friendly Titan...

Ready to gather more Golden Apples

W. Murray 56

LHC status

stop-neutralino limits

•Simplified models put bounds at 0.5 and 1.2 TeV on neutralino and stop

W. Murray 59

Combined: K_v – K_fHIGG-2021-23

Assuming vector and fermion couplings scale, errors 5% in fermion, 3% boson
 B_{inv} < 13% (8% expected) [κ_v constrained ≤ 1]
 c/f 14% (10%) from VBF paper

W. Murray 60

Η to ττ HIGG-2019-09

h-h, I-h and e-µ channels; 4200 signal events
4 main production modes
VBF best measured

•All agree with SM

W. Murray 61

H to bb Eur. Phys. J. C 81 (2021) 178

Best sensitivity in VH mode

- Tag W or Z as trigger
 Analysis uses BDT
 - But cut-n-count easier to visualise.

•0/1/2 leptons \rightarrow Z/W/Z

 $\mu_{VH}^{bb} = 1.02^{+0.18}_{-0.17} = 1.02^{+0.12}_{-0.11} (\text{stat.})^{+0.14}_{-0.13} (\text{syst.})$

H to cc

arXiv:2201.11428

Decay rate 3%, 1/20th bb
Tagging charm quarks hard
Intermediate between light and b in mass and lifetime

Higgs boson: ATLAS overview

The defining discovery of the LHC Decays to ZZ, γγ, WW, ττ, bb: all observed at 5σ Same for ggH, VBF, VH and ttH production

Kinematic effects of κ_{λ} variation

Cross-section of HH is 32.7fb

Science and

Technology Facilities Council

- Low value enforced by interference between modes
 - If you set κ_λ to zero, rate increases
- The spectrum also changes

.

- SM gives particularly high mass Higgs pairs.
- Triggering easier than it might be

Di Higgs channels

 Many weak channels are not exploited – some gain possible

$\textbf{HH} \rightarrow \textbf{bbbb}$

ATLAS-CONF-2022-035

Highest branching ratio
ggF and VBF modes used
Resolved channels
Trigger tricky: combine:

- 2b2j, pt>35 GeV all
- 2b1j, non b jet pt>100-150
- Tightened offline
- Backgrounds (multijet) from mass sidebands
- Best ggF signal region shownObs (expected) limits:
 - 5.4(8.1) x SM rates

HH → bbttatlas-conf-2021-030

Full data result just out Ih and hh channels analyses hh, shown right, most powerful Z+HF most important background Controlled with II+HF CR Trigger: 1 or 2 tau, with thresholds/jets year dependent Most sensitive ATLAS channel

		Observed	-2σ	-1σ	Expected	$+1 \sigma$	$+2 \sigma$
$ au_{ m had} au_{ m had}$	$ \sigma_{\rm ggF+VBF} [\rm fb] \\ \sigma_{\rm ggF+VBF} / \sigma_{\rm ggF+VBF}^{\rm SM} $	$\begin{array}{c} 145 \\ 4.95 \end{array}$	70.5 2.38	$94.6 \\ 3.19$	$131 \\ 4.43$	$\begin{array}{c} 183 \\ 6.17 \end{array}$	$\begin{array}{c} 245\\ 8.27\end{array}$
$ au_{ m lep} au_{ m had}$	$ \sigma_{\rm ggF+VBF} [\rm fb] \\ \sigma_{\rm ggF+VBF} / \sigma_{\rm ggF+VBF}^{\rm SM} $	$\begin{array}{c} 265\\ 9.16\end{array}$	$\begin{array}{c} 124 \\ 4.22 \end{array}$	$167 \\ 5.66$	$231 \\ 7.86$	$322 \\ 10.9$	$\begin{array}{c} 432\\ 14.7\end{array}$
Combined	$ \sigma_{\rm ggF+VBF} [\rm fb] \\ \sigma_{\rm ggF+VBF} / \sigma_{\rm ggF+VBF}^{\rm SM} $	$\begin{array}{c} 135 \\ 4.65 \end{array}$	$\begin{array}{c} 61.3 \\ 2.08 \end{array}$	$82.3 \\ 2.79$	$\frac{114}{3.87}$	$159 \\ 5.39$	$213 \\ 7.22$

W. Murray 68

$HH \to bb\gamma\gamma$

arXiv:2112.11876

• $H \rightarrow yy$ has good resolution & triggering; $H \rightarrow bb$ is high rate, Four slices: BDT score & HH mass Fit using exponential for bkd Single Higgs comparable to HH 1.4 Signal expected Expected UL 5.7xSMσ

Observed UL 4.2xSMσ

Differential distributions

Science and

Technology Facilities Council

 Clean γγ and ZZ modes can access H p_T, η
 Shape sensitive to b, c components of ggF loop: -8.6<κ_c<17.3 (κ_c fixed to 1)

W. Murray 70

ggF & VBF H to WW HIGG-2021-20

