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 Introduction and motivation

Expected to produce large number of particles and thus provide the 
opportunity to analyze the data on an event-by-event basis.

The goals of heavy-ion collisions at RHIC 
and LHC are: 

➔ to explore the QCD phase diagram,

➔ to locate the critical point,

➔ to search for quark-hadron phase 
transition.

Heavy ion collisions
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 Introduction and motivation

Clustering

Fluctuations in the 
geometrical

configurations
(spatial patterns)

Criticality 
and 

quark-hadron 
phase transition 

 As the system approaches critical temperature, the tension between the collective interactions and 
thermal randomization increases leading to the formation of clusters.

 Multiplicity fluctuations are an important tool for understanding the dynamics of the produced particles 
and phase transition in heavy-ion collisions.

 These fluctuations are characterized by the moments of the particle density distribution within a given 
phase space.

 One of such moments to study the scaling properties of multiplicity fluctuations over a range of bin sizes 
is Normalized Factorial Moment (NFM). 
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Phase space (η, φ)  is divided into a square lattice: 
➢ Bin multiplicity is used to calculate the Normalized Factorial Moments (NFM). 

f q(n ie) = n ie(n ie−1)(nie−2).........(nie−q+1)

1. R.C. Hwa and C.B. Yang, PRC 85, 044914 (2012).

 Observables

where N  : number of events, M : number of bins, n
ie 

: bin 
multiplicity, n

ie
 ≥ q, q - order of the moment; q ≥ 2 

➢ F
q 
filters out statistical fluctuations.

➢ F
q 
is independent of the uniform detector efficiencies. 

ith cell, 3 particles 
(n

ie 
)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.044914
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Fq(M ) ∝ M
φq1. M-Scaling

Fq(M ) ∝ F2(M )
βq2. F-Scaling

βq ∝ (q−1)ν

➔ ν :  is dimensionless scaling exponent 
which characterizes the dynamics of the 
system under study. 

ν  ≅ 1.32     Ginzburg-Landau formalism1  for  
the sthe second- order phase transition  
ν  ≅  1.41   Critical fluctuations in case of 
Successive Contraction and Randomization 
(SCR) Model2

1. R.C. Hwa and Jicai Pan, PLB 297, 35 (1992).
2. R.C. Hwa and C.B. Yang, PRC 85, 044914 (2012).

Intermittency is observed if Fq shows a power law 
dependence on the number of phase space bins (M). 
 

 Observables

Observation of intermittency is related to self-similarity and fractal behavior of the particle 
production.

https://www.sciencedirect.com/science/article/abs/pii/037026939291065H
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.044914
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 ALICE detector
Detectors
ITS |η|  < 0.9
Vertexing and tracking
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 ALICE detector
Detectors
ITS |η|  < 0.9
Vertexing and tracking

TPC |η|  < 0.9
Tracking and particle identification
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 ALICE detector
Detectors
ITS |η|  < 0.9
Vertexing and tracking

TPC |η|  < 0.9
Tracking and particle identification

V0 3.7 < η< − 1.72.8 < η < − 5.1
Trigger and centrality estimation
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Results
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 M-scaling, F-scaling in ALICE data 
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● Power-law growth of the NFM with the increase in the number of bins (M).
● Toy MC results, with statistical fluctuations only, do not describe the ALICE data.
● F-scaling observed in ALICE data and scaling exponent is calculated which gives 

information about the system under study. 

M-scaling F-scaling βq ∝ (q−1)ν



Sheetal Sharma ICNFP, 2022 11

 M-scaling: comparison with models 
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 Qualitative and quantitative 
difference are observed 
between data and MC.

 Observed difference in the 
scaling properties of charged 
particle multiplicity distributions 
as the binning resolution 
increases. 

Scale-invariant density fluctuations 
observed in ALICE data but absent in 

MC
 (HIJING, AMPT, Toy MC).
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   pT bin width dependence of ν 
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Narrow p
T
 intervals

● Scaling exponent (ν) is independent 
of p

T
 bin and p

T
 bin width within 

uncertainties.
● Scaling exponent values obtained 

from the ALICE data are in 
agreement with the predicted values 
for critical fluctuations and the GL 
formalism.
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   pT bin width dependence of ν 
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● Scaling exponent (ν) is independent 
of p

T
 bin and p

T
 bin width within 

uncertainties.
● Scaling exponent values obtained 

from the ALICE data are in 
agreement with the predicted values 
for critical fluctuations and the GL 
formalism.

Wide p
T
 intervals

Analysis of the large statistics data 
from 2015 and 2018 is ongoing.
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 Summary 

 Intermittency signal i.e. linear behaviour between ln F
q 

and ln M2 is observed at higher bin 
resolution (M2). 

 F-scaling of moments of multiplicity fluctuations is observed in ALICE data.

 HIJING and AMPT models do not describe the linear behaviour of factorial moments with 
increase in the number of bins as observed in the ALICE data.

 Values of scaling exponent (ν) show no dependence on p
T 

bin width and agree with the 
models with critical fluctuations. 
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