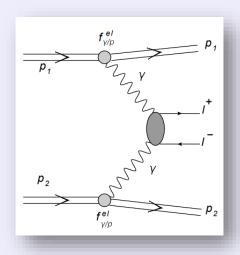
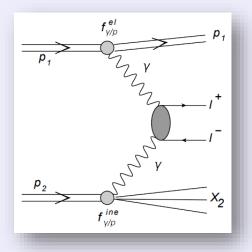
# Production of dileptons via photon-photon processes in proton-proton collisions with one forward proton measurement at the LHC

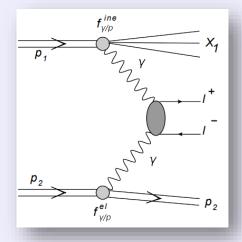
Marta Łuszczak

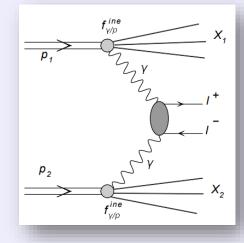
Institute of Physics, University of Rzeszow, Poland

XI International Conference on New Frontiers in Physics (ICNFP 2022)


30 August 2022 - 11 September 2022


OAC, Kolymbari, Crete, Greece


#### Introduction


- We discuss photon-photon fusion mechanisms of dilepton production in proton-proton collisions with rapidity gap in the main detector and one forward proton in the forward proton detectors.
- Transverse momenta of the intermediate photons are taken into account and photon fluxes are expressed in terms of proton electromagnetic form factors and structure functions.
- Both double-elastic and single-dissociative processes are included in the analysis.
- The formalism that we used can be also used for  $W^+W^-$  and  $t\bar{t}$  production processes.
- The soft rapidity gap survival factor is calculated for each contribution separately.
- The soft rapidity gap survival factor for the case of single proton measurement is significantly smaller than that for the inclusive case (no proton measurement).
- Our analysis include a comparison obtained by us with the results coming from Superchic generator.
- Published in Phys. Rev. D 104 (2021) 7, 074009

# $\gamma\gamma ightarrow l^+ l^-$ mechanism and $k_T$ factorization approach









The cross section for production of  $l^+l^-$  in the  $k_T$ -factorization approach can be written as:

$$\frac{d\sigma^{i,j}}{dy_1 dy_2 d^2 \boldsymbol{p_1} d^2 \boldsymbol{p_2}} = \int \frac{d^2 \boldsymbol{q_1}}{\pi \boldsymbol{q_1^2}} \frac{d^2 \boldsymbol{q_2}}{\pi \boldsymbol{q_2^2}} \mathcal{F}_{\boldsymbol{\gamma}^*/A}^{(i)}(\boldsymbol{x_1}, \boldsymbol{q_1}) \, \mathcal{F}_{\boldsymbol{\gamma}^*/B}^{(j)}(\boldsymbol{x_2}, \boldsymbol{q_2}) \frac{d\sigma^*(\boldsymbol{p_1}, \boldsymbol{p_2}; \boldsymbol{q_1}, \boldsymbol{q_2})}{dy_1 dy_2 d^2 \boldsymbol{p_1} d^2 \boldsymbol{p_2}} \qquad i, j \in \{el, in\}$$

The photon flux for inelastic case in this approach is integrated over the mass of the remnant

#### Photon fluxes

The elastic flux is expressed by the proton electromagnetic form factor:

$$\mathcal{F}_{\gamma^* \leftarrow A}^{el}(z, \mathbf{q}) = \frac{\alpha_{em}}{\pi} \left\{ (1 - z) \left( \frac{\mathbf{q}^2}{\mathbf{q}^2 + z(M_X^2 - m_A^2) + z^2 m_A^2} \right)^2 \frac{4m_p^2 G_E^2(Q^2) + Q^2 G_M^2(Q^2)}{4m_p^2 + Q^2} + \frac{z^2}{4 \mathbf{q}^2 + z(M_X^2 - m_A^2) + z^2 m_A^2} G_M^2(Q^2) \right\}$$

The inelastic flux is expressed by the proton structure functions  $F_2(x_{Bj}, Q^2)$  and  $F_L(x_{Bj}, Q^2)$ :

$$\mathcal{F}_{\gamma \leftarrow A}^{in}(z, \mathbf{q}) = \frac{\alpha_{em}}{\pi} \left\{ (1 - z) \left( \frac{\mathbf{q}^2}{\mathbf{q}^2 + z(M_X^2 - m_A^2) + z^2 m_A^2} \right)^2 \frac{F_2(x_{Bj}, Q^2)}{Q^2 + M_X^2 - m_p^2} + \frac{z^2}{4x_{Bj}^2} \frac{\mathbf{q}^2}{\mathbf{q}^2 + z(M_X^2 - m_A^2) + z^2 m_A^2} \frac{2x_{Bj} F_1(x_{Bj}, Q^2)}{Q^2 + M_X^2 - m_p^2} \right\}$$

#### Photon fluxes

Unintegrated inelastic photon distribution (flux) depends also on the mass of the remnant system:

$$\boldsymbol{\mathcal{F}_{ine}}(x,q_t^2) = \int dM^2 \frac{d\boldsymbol{\mathcal{F}_{ine}}}{dM^2} (x,q_t^2,M^2)$$

The longitudinal momentum fractions and four-momenta of intermediate photons:

$$x_{1} = \sqrt{\frac{p_{1}^{2} + m_{l}^{2}}{s}} e^{+y_{1}} + \sqrt{\frac{p_{2}^{2} + m_{l}^{2}}{s}} e^{+y_{2}} \qquad q_{1} \approx \left(x_{1} \frac{\sqrt{s}}{2}, \vec{q}_{1t}, x_{1} \frac{\sqrt{s}}{2}\right)$$

$$x_{2} = \sqrt{\frac{p_{1}^{2} + m_{l}^{2}}{s}} e^{-y_{1}} + \sqrt{\frac{p_{2}^{2} + m_{l}^{2}}{s}} e^{-y_{2}} \qquad q_{2} \approx \left(x_{2} \frac{\sqrt{s}}{2}, \vec{q}_{2t}, -x_{2} \frac{\sqrt{s}}{2}\right)$$

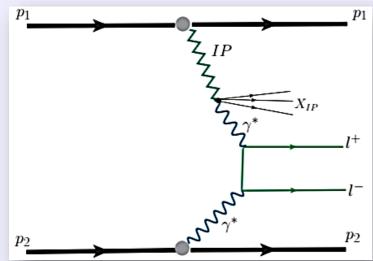
#### Structure functions arguments

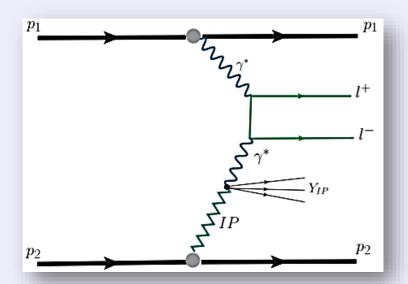
#### Bjorken – x:

$$x_{Bj1} = \frac{q_{1t}^2}{\left(q_{1t}^2 + M_X^2 - m_p^2\right)},$$

$$x_{Bj2} = \frac{q_{2t}^2}{\left(q_{2t}^2 + M_Y^2 - m_p^2\right)},$$

#### Photon virtuality:


$$Q_1^2 \approx q_{1t}^2$$


$$Q_2^2 \approx q_{2t}^2$$

#### Proton emission from the remnant system

- Proton can be produce from the remnant system
- Those protons reduced longitudinal momentum fraction cannot be measurement at the detectors
- Pomeron remnant destroys the rapidity gap

• 
$$\frac{d\mathcal{F}_{diff}}{dM^2}(x, q_t^2, M^2) \ll \frac{d\mathcal{F}_{ine}}{dM^2}(x, q_t^2, M^2)$$





Diffractive mechanisms of dilepton production in proton-proton collisions

#### Imposed cuts

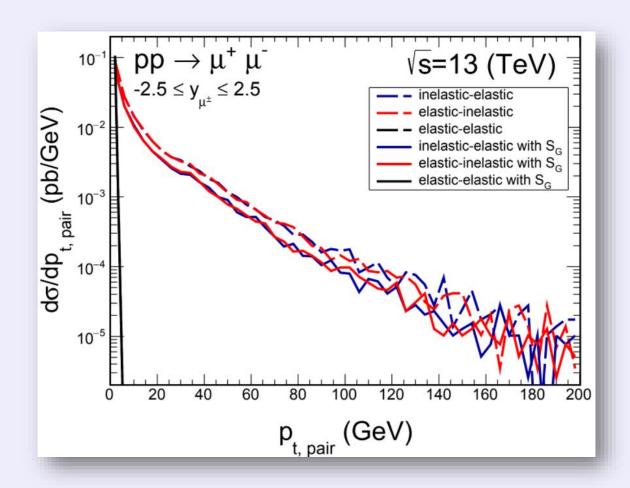
We used the consistency requirements imposed by ATLAS collaboration:

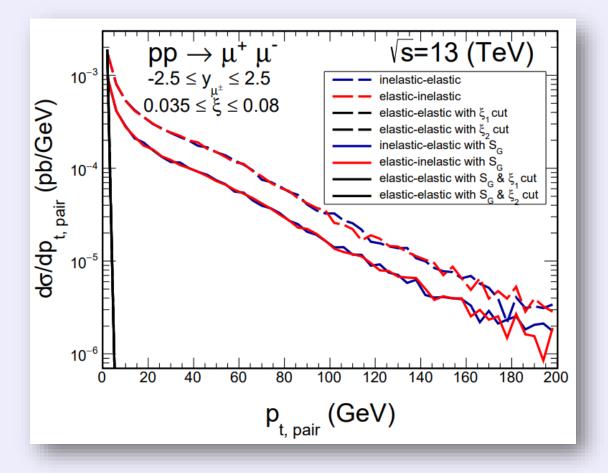
$$\xi_1 = \xi_{ll}^+, \qquad \xi_2 = \xi_{ll}^-$$

The longitudinal momentum fractions of the photons were calculated in the ATLAS analysis as:

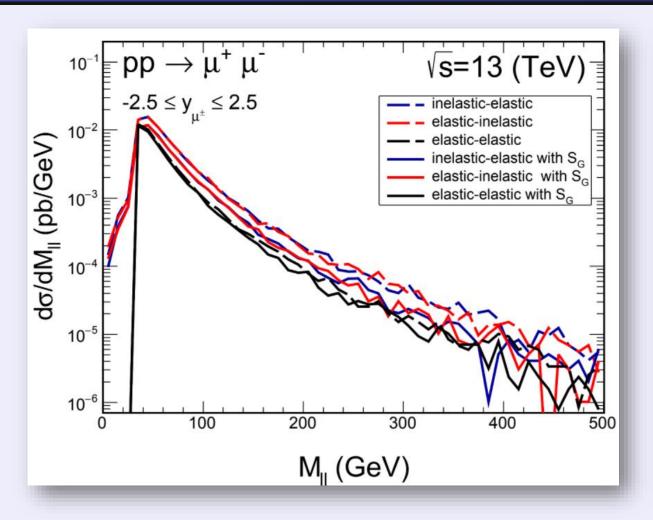
$$\xi_{11}^{+} = \left(\frac{M_{ll}}{\sqrt{s}}\right) e^{+Y_{ll}}$$

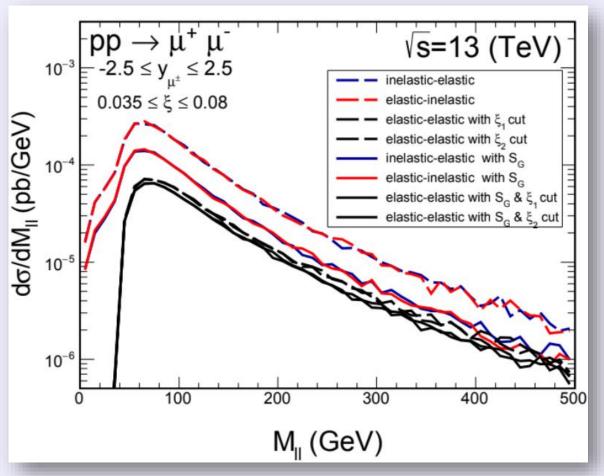
$$\xi_{11}^{-} = \left(\frac{M_{ll}}{\sqrt{s}}\right) e^{-Y_{ll}}$$


In our calculation, we imposed the following cuts:


$$-2.5 < y_1, y_2 < 2.5$$

$$p_{1t}, p_{2t} > 15 \, GeV$$


$$0.035 < \xi_{ll}^+, \xi_{ll}^- < 0.08$$

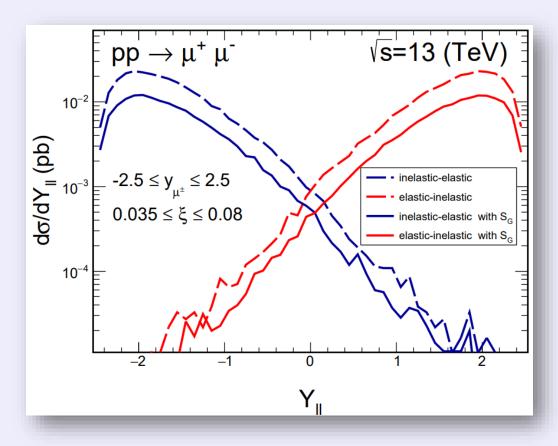

# Distribution in p<sub>t,pair</sub> (Superchic)



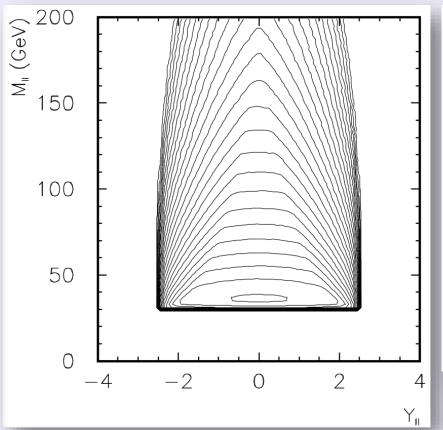


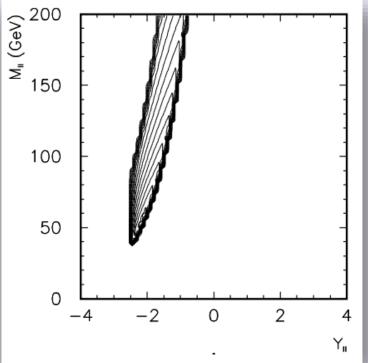
### Distribution in M<sub>II</sub> (Superchic)

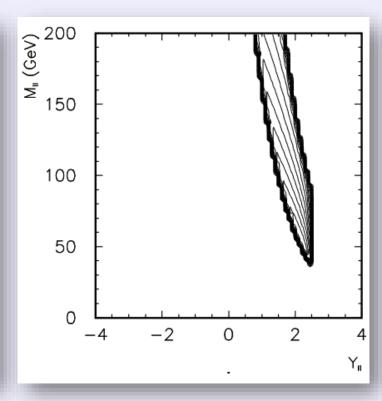





# Distribution in Y<sub>II</sub> (Superchic)


without  $\xi$  cuts (a single proton is not measured)

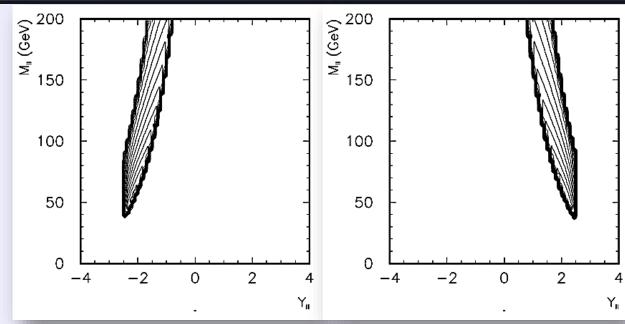




with ξ cuts



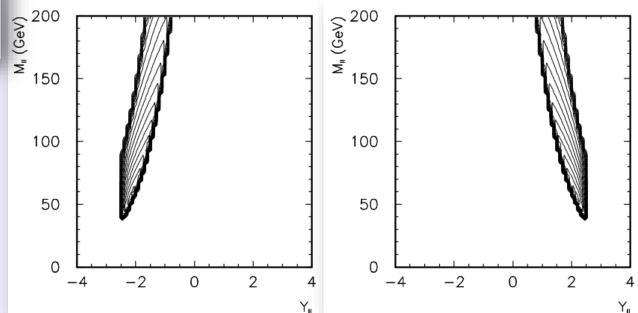
# Two-dimension distribution in (M<sub>II</sub>, Y<sub>II</sub>)








- no cuts on neither  $\xi 1$  or  $\xi 2$  were imposed
- the maximum of this contribution corresponds to a rapidity close to zero


- cuts on ξ1 or ξ2 were imposed, one of the protons is measured
- any particles for masses less then 150 GeV

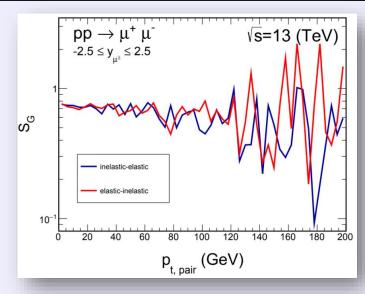
# Two-dimension distribution in $(M_{\parallel}, Y_{\parallel})$

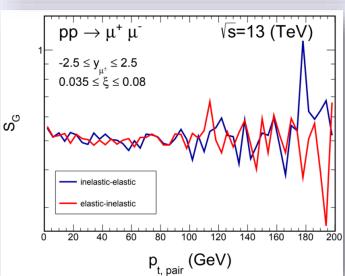


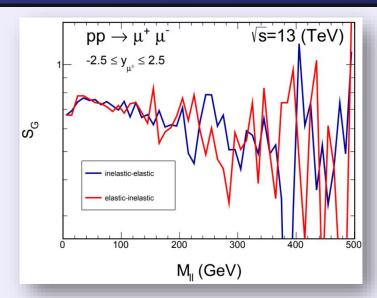
Two dimension distribution in  $(M_{||}, Y_{||})$  for double-elastic contribution

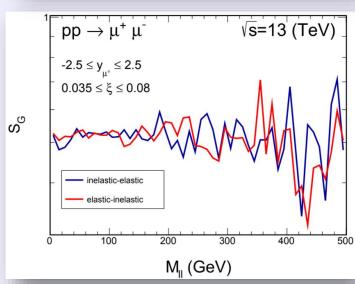
Two dimension distribution in  $(M_{||}, Y_{||})$  for single-dissociation contribution

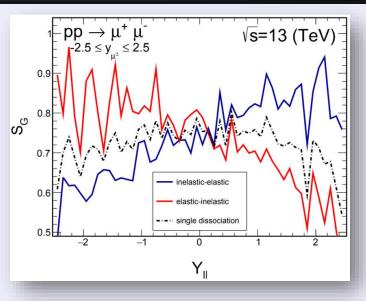


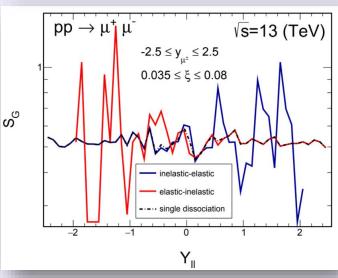

#### Gap survival factor


$$S_G(p_{t,pair}) = \frac{d\sigma/dp_{t,pair}|_{withSR}}{d\sigma/dp_{t,pair}|_{withoutSR}}$$

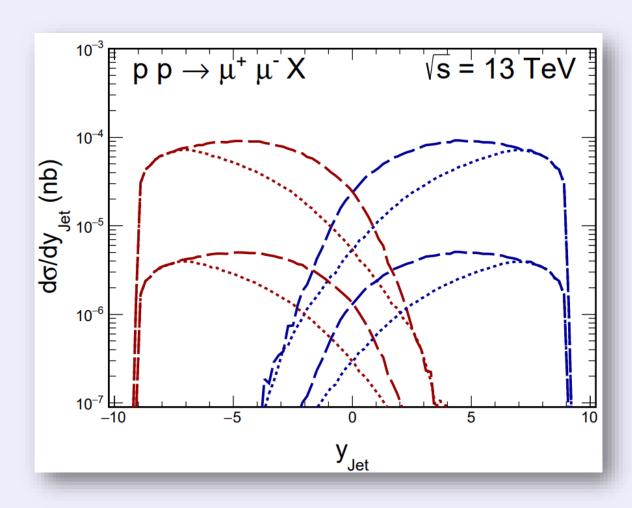

$$S_G(M_{ll}) = \frac{d\sigma/dM_{ll}|_{withSR}}{d\sigma/dM_{ll}|_{withoutSR}}$$


$$S_G(Y_{ll}) = \frac{d\sigma/dY_{ll}|_{withSR}}{d\sigma/dY_{ll}|_{withoutSR}}$$

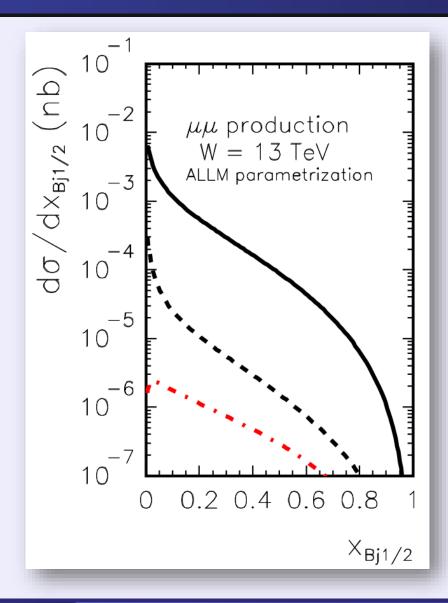

# Gap survival factor – function of $p_{t,pair}$ , $M_{\parallel}$ and $Y_{\parallel}$

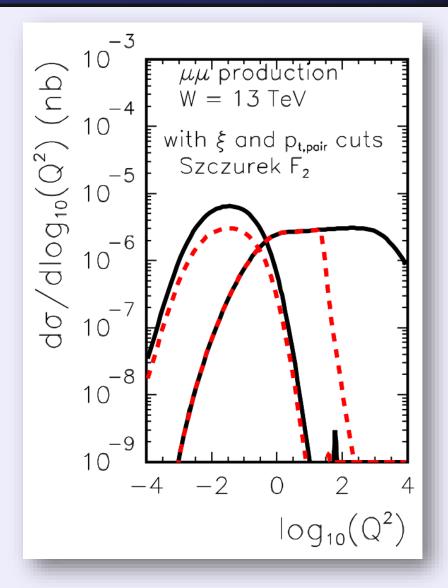







### Distribution in the (mini)jet rapidity



#### Distribution in the arguments of structure functions





## Integrated cross section

| contribution                                                | c.s. in fb without $\xi$ -cuts | c.s. in fb with $\xi$ -cuts |
|-------------------------------------------------------------|--------------------------------|-----------------------------|
| elastic-elastic, cut on proton 1                            | 358.68                         | 5.4591                      |
| elastic-elastic, cut on proton 2                            |                                | 5.4592                      |
| elastic-inelastic, VDM (no Ω), 0-100 GeV                    | 98.0215 (2UN)                  |                             |
| inelastic-elastic, VDM (no Ω), 0-100 GeV                    | 98.0297 (2UN)                  |                             |
| elastic-inelastic SU partonic                               | 449.1076 (2UN)                 |                             |
| inelastic-elastic SU partonic                               | 449.0985 (2UN)                 |                             |
| elastic-inelastic, cut on proton 1, ALLM                    | 468.6102 (2UN)                 | 11.8292                     |
| inelastic-elastic, cut on proton 2, ALLM                    | 468.6102 (2UN)                 | 11.8294                     |
| elastic-inelastic, new Szczurek                             | 461.5330 (2UN)                 | 12.6046 [14.1806] (5.9311)  |
| inelastic-elastic, new Szczurek                             | 461.5750 (2UN)                 | 12.6032 [14.1806] (5.9309)  |
| elastic-inelastic, new Szczurek, $M_{\rm Y} > 500~{ m GeV}$ |                                | 0.7152                      |
| inelastic-elastic, new Szczurek, $M_X > 500 \text{ GeV}$    |                                | 0.7149                      |
| elastic-inelastic, ALLM                                     | 571.871 (GEN)                  | 9.711                       |
| inelastic-elastic, ALLM                                     | 571.562 (GEN)                  | 9.621                       |
| elastic-inelastic, LUX-like, $F_2 + F_L$                    | 635.215 (GEN)                  | 19.894                      |
| inelastic-elastic, LUX-like, $F_2 + F_L$                    | 635.102 (GEN)                  | 19.831                      |
| elastic-inelastic, LUX-like, $F_2$ only                     | (GEN)                          |                             |
| inelastic-elastic, LUX-like, F <sub>2</sub> only            | 656.702 (GEN)                  |                             |

### Integrated corss section & gap survival factor(Superchic)

| reaction                                 | no soft $S_G$ | with soft $S_G$ | $\langle S_G \rangle$ |
|------------------------------------------|---------------|-----------------|-----------------------|
| $-2.5 < Y_{ll} < 2.5$                    |               |                 |                       |
| elastic-elastic                          | 0.54438       | 0.50402         | 0.926                 |
| inelastic-elastic                        | 0.89595       | 0.64283         | 0.717                 |
| elastic-inelastic                        | 0.89587       | 0.64254         | 0.717                 |
| inelastic-inelastic                      | 1.62859       | 0.24172         | 0.148                 |
| $-2.5 < y_1, y_2 < 2.5$ in addition      |               |                 |                       |
| elastic-elastic                          | 0.42268       | 0.39355         | 0.931                 |
| inelastic-elastic                        | 0.69241       | 0.51092         | 0.738                 |
| elastic-inelastic                        | 0.69246       | 0.51087         | 0.738                 |
| $\xi$ cut in addition                    |               |                 |                       |
| elastic-elastic, cut on $\xi_1$          | 0.00762       | 0.00675         | 0.886                 |
| elastic-elastic, cut on $\xi_2$          | 0.00762       | 0.00675         | 0.886                 |
| inelastic-elastic, cut on $\xi_2$        | 0.02496       | 0.01324         | 0.530                 |
| elastic-inelastic, cut on $\xi_1$        | 0.02393       | 0.01238         | 0.517                 |
| $p_{t,pair} < 5 \text{ GeV}$ in addition |               |                 |                       |
| elastic-elastic                          |               |                 |                       |
| inelastic-elastic, cut on $\xi_2$        | 0.00807       | 0.00437 (*)     | 0.541                 |
| elastic-inelastic, cut on $\xi_1$        | 0.00807       | 0.00437 (*)     | 0.542                 |

| contribution                          | without $S_G$ | with $S_G$ |
|---------------------------------------|---------------|------------|
| cut on $Y_{ll}$ only                  |               |            |
| elastic-inelastic                     | 0.76304       | 0.78756    |
| inelastic-elastic                     | 0.76278       | 0.78898    |
| cut on $y_1$ and $y_2$ in addition    |               |            |
| elastic-inelastic                     | 0.77366       | 0.79250    |
| inelastic-elastic                     | 0.76926       | 0.78744    |
| cut on $\xi_1$ or $\xi_2$ in addition |               |            |
| elastic-inelastic                     | 0.52430       | 0.53976    |
| inelastic-elastic                     | 0.53118       | 0.53614    |
| cut on $p_{t,pair}$ in addition       |               |            |
| elastic-inelastic                     | 0.83144       | 0.84350(*) |
| inelastic-elastic                     | 0.83462       | 0.84960(*) |

#### Conclusions

- We have discussed dilepton production initiated by **photon-photon fusion** with one forward.
- We have consider both double-elastic and single-dissociative contributions.
- We have imposed conditions on  $\xi_1$  or  $\xi_2$  for the forward emitted protons.
- Particularly interesting is the distribution in  $M_{11}$  and the distribution in  $Y_{11}$  which has minimum at  $Y_{11} \sim 0$ .
- We have made calculations with the **SUPERCHIC** generator and compared corresponding results to the results of our code(s). In general, the results are almost identical.
- We have calculated also the soft rapidity gap survival factor as a function of  $M_{ll}$ ,  $p_{t, pair}$  and  $Y_{ll}$ .
- The soft gap survival factor for the single dissociative contribution strongly depends on whether the proton is measured or not.
- No evident dependences on the variables have been found for the single dissociation, except of distribution in  $Y_{ll}$ .
- We have also calculated gap survival factor due to mini(jet) emission by checking whether the minijet enters or not the main detector.
- The second type of the gap survival also strongly depends on whether the outgoing proton is measured or not. It is about 0.8 for inclusive case and about 0.5 for the case with proton measurement in forward proton detector.