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Luminosity

• Luminosity measurement is crucial for 

determining production cross sections

• Strategy: determine the visible 

cross-section (σ
vis

) for each detector

• Uncertainties from the absolute 

calibration 

• Monitor linearity and stability

Detector and method specific 
calibration constant (obtained 
in VdM scans)

dN/dt = L
inst

 σ
vis

Specific event rate measured by the 
actual detector

L = ∫L
inst 

dt

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
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Luminosity measurements

• Goals: sufficiently accurate

• Online measurements: ~5% uncertainty in 

all conditions (reach ~2% for HL-LHC)

• monitoring the LHC running conditions

• Offline integrated luminosity per 

data-taking period: ~2.5% preliminary, best 

final in 2016 pp: 1.2%

(reach 1% for HL-LHC) 

CMS-TDR-023

~1% systematic error on luminosity, becomes 
comparable to other experimental uncertainties

CMS-TDR-023

• Luminosity uncertainty: huge fraction of the overall experimental uncertainties

• Running with different conditions

○ Expected peak luminosity in HL-LHC: 7.5x1034 cm-2s-1, pileup of ~200

○ Run-2 peak: 2x1034 cm-2s-1 pileup ~50
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Luminometers at the CMS

Pixel detector:
● Pixel cluster 

counting (PCC)
○ Occupancy of 

the detector

Pixel Luminosity Telescope (PLT):
● Pixel planes in a telescope 

arrangement
● Counting coincidences
● Real-time, bunch-by-bunch lumi

Fast Beam Condition Monitor (BCM1F):
● Hit counting
● Machine induced background 

measurements
● Real-time, bunch-by-bunch lumi

Beam position monitors (BPM) to 
measure the orbit of the 
circulating beams
• Diode ORbit and OScillation 

(DOROS) detectors 
• Arc BPM detectors

Beam current detectors
• DC Current Transformers 

(DDCT)
• Fast Beam Current 

Transformers (FBCT)

Other detectors are also 
used for the calibration

Muon barrel drift 
tubes:
● Counting muon 

track stubs

Hadron Forward Calorimeter (HF):
• Dedicated backend for lumi 

(bunch-by-bunch)
• Two algorithms
○ ΣE

t
 (HFET) 

○ Tower occupancy (HFOC)

Measuring ghost and satellites
• LHC Longitudinal Density 

Monitor (LDM)
• LHCb Beam-Gas Imaging (BGI) 

using VELO

RAMSES in the cavern:
● Radiation monitoring system
● Also used for lumi estimation

EPJC 81, 800 (2021)
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Van der Meer methodology
• VdM calibration: precise σ

vis
 estimation 

under special conditions

• Bunch-by-bunch interaction rate for 

several different beam separation 

values in x and y directions

• Low pileup ≈ 0.5

• Smaller number of filled bunches with 

at least 500 ns separation

• Relatively large beam size

• Results are extrapolated to physics run 

conditions

• Additional uncertainties from

linearity and long-term stability studies

Beam overlap widths (Σ
x,y

) and rate (R
0
) during head-on collisions

• Rate measurement during two separation scans in x and y 
directions (affected by background) 

• Beam orbit monitoring with BPMs (corrections due to 
length-scale, orbit movements, beam-beam interactions)

LHC orbit revolution frequency: 
f = 11245.5 Hz

Bunch intensity from beam current 
measurements, corrected for ghost and 
satellite charges: N

1
,N

2 
≈ 8x1010

Assumptions: x-y direction 
factorization
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VdM calibration
• Collision rates measured as a function of the beam separation

• Rates from luminometers
• Orbit from beam position monitors

CMS PAS  LUM-18-002

Combination of the two measurements: 
beam separation fit for Σ

x,y 
and
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VdM calibration
• Collision rates measured as a function of the beam separation

• Rates from luminometers
• Orbit from beam position monitors

CMS PAS  LUM-18-002

Combination of the two measurements: 
beam separation fit for Σ

x,y 
and
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Normalization (VdM) corrections with the largest uncertainties (more 

corrections in the backup)

● Orbit drift corrections (0.5-0.8%): from the difference between the 

nominal and the corrected beam positions

● Beam-beam effects (0.5%): electromagnetic interactions between the 

two beams leads to optical effect (dynamic beta) and a deflection from 

the nominal position

● X-Y nonfactorisation (0.5-2%): not completely independent x and y 

bunch proton density function, calculated from specific separation scans 

(imaging, offset and diagonal) or by studying the luminous region 

parameters in standard VdM scans
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Corrections under physics conditions and stability

● Final selection of the primary luminometer (PCC in 

2018), its data is used for luminosity estimations. 

● Uncertainty (more in backup) comes from the 

comparison of the primary and the secondary 

luminometer measurements.

Ratio plots to check the 
long-term stability and linearity
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Relative luminosity corrections from emittance scans recorded during physics runs since 2017
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Corrections under physics conditions and stability

● Final selection of the primary luminometer (PCC in 

2018), its data is used for luminosity estimations. 

● Uncertainty (more in backup) comes from the 

comparison of the primary and the secondary 

luminometer measurements.

Ratio plots to check the 
long-term stability and linearity
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Relative luminosity corrections from emittance scans recorded during physics runs since 2017

Precise luminosity for Run-2

● Altogether 1.2-2.5% total uncertainty 

on the offline luminosity measurements

○Most precise final luminosity for 2016 

with 1.2% uncertainty
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Instruments for Phase-2 luminosity
● Exploitation of the available sub-detector systems

○ Online bunch-by-bunch readout if feasible

● New tracking detector system

○ Inner Tracker Endcap Pixel Detector (TEPX): online pixel 

cluster counting

○ TEPX Disk 4 Ring1 (D4R1): exclusively for lumi and 

beam-induced background measurements

○ Outer Tracker Layer 6 (OT L6): counting track stubs 

(coincidences)

● Extended access to the trigger primitives with 40 MHz 

frequency (scouting): muons, tracks, calorimeter objects

● Muon barrel: extended bunch-by-bunch resolution

● Fast Beam Condition Monitor: completely new standalone 

luminometer

○ Asynchronous timing: sub-BX time resolution

○ Good statistical precision, excellent expected linearity

○ No significant degradation due to irradiation and ageing

CMS-TDR-023
HL-LHC luminometers

Altogether the needed ~1% uncertainty
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Overview
• Precise luminosity measurements during Run-2

• Reaching 1.2% precision in 2016 pp@13 TeV

• Expectations for Run-3: continue understanding the dominant sources of systematics to achieve 

more precise luminosity calculations with partially rebuilt / upgraded detectors

• Opportunity to test some of the Phase-2 systems: muon barrel stubs and 40 MHz scouting 

(muon candidates, potentially calorimeter observables), semi-online pixel cluster counting

• Ambitious upgrade program for Phase-2 HL-LHC: robust systems with improved linearity and 

constant monitoring

• Upgraded or completely replaced instrumentation

• Better understanding of the beam parameters, sources and determination of systematics bias 

• Ultimate goal in sight: luminosity measurements with ~1% total uncertainty at pileup 200

CMS Collaboration, “The Phase-2 Upgrade of the CMS Beam Radiation Instrumentation and Luminosity Detectors”, CMS Technical Proposal CMS-TDR-023
CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at 13 TeV in 2015 and 2016 at CMS”, EPJC 81, 800 (2021)

http://cds.cern.ch/record/2759074/files/CMS-TDR-023.pdf?version=4
https://arxiv.org/pdf/2104.01927.pdf
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Backup
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VdM (normalization) corrections

CMS PAS LUM-18-002
● Charge current per bunch, corrected for ghosts and satellites

● Linear and residual orbit drift corrections: from interpolation 

between measured head-on positions and positions per step 

during scans

● Length scale: correction of the nominal beam positions to use 

the CMS length scale extracted from vertex positions

● Beam-beam effects: electromagnetic interaction between the 

two beams leads to an optical distortion effect on the bunch 

shapes (dynamic beta) and a deflection from the nominal 

position

● Background subtraction (luminometer specific): intrinsic noise 

measured for empty bunch crossings

● X-Y nonfactorisation from specific separation scans or by 

studying the luminous region parameters in standard VdM 

scans
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Corrections for data-taking (integration) 

CMS PAS LUM-18-002

● Out-of-time corrections (more filled bunches arriving 

in trains during data-taking)

○ type-1: effect on the next bunch crossing

○ type-2: late hits, nuclear excitations…

■  exponential time development

● Efficiency and noise corrections: reduced response 

due to irradiation, ageing or other detector specific 

effect

● Non-linearity corrections

● Cross-detector stability: long-term comparison of the 

measured luminosities
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Uncertainties in Run 2
Systematic

Uncertainty Run 2 (%)
preliminary

Uncertainty in 2016  
(%)

Normalization

Length scale 0.2–0.3 0.2

Linear orbit drift 0.1–0.2 0.1

Residual orbit drift 0.5–0.8 0.5

x-y nonfactorization 0.5–0.8 0.5

Beam-beam deflection
0.5 0.5

Dynamic-β

Beam current 
calibration

0.2 0.2

Ghosts and satellites 0.1 0.1

Scan to scan variation 0.3–0.5 0.3

Bunch to bunch 
variation

0.1 0.1

Cross-detector 
consistency

0.5–0.6 0.5 

Background (detector 
specific)

0.1 0.1

Integration

Out-of-time effects 
(detector specific)

0.3–0.4 0.3

Cross-detector 
stability 

0.5–0.6 0.5

Linearity 0.3–1.5 0.3 

CMS deadtime < 0.1 < 0.1

Total 1.2–2.5 1.2

Phase-2 expectations: ~1% 
total systematic uncertainty

Coming from the 
extrapolation of the 
calibration to high pileup 
conditions, and from the 
stability of the measurements 
(data-taking)

Uncertainty on the σ
vis

 
estimations (VdM) 


