Precision luminosity measurement at the CMS experiment in Run 2 and prospects for HL-LHC

ICNFP 2022

Luminosity

- Luminosity measurement is crucial for determining production cross sections
- Strategy: determine the visible cross-section (σ_{vis}) for each detector
 - Uncertainties from the absolute calibration
 - Monitor linearity and stability

Luminosity measurements

- Luminosity uncertainty: huge fraction of the overall experimental uncertainties
- Running with different conditions
 - Expected peak luminosity in HL-LHC: 7.5x10³⁴ cm⁻²s⁻¹, pileup of ~200
 - Run-2 peak: $2x10^{34}$ cm⁻²s⁻¹ pileup ~50
- Goals: sufficiently accurate
 - Online measurements: ~5% uncertainty in all conditions (reach ~2% for HL-LHC)
 - monitoring the LHC running conditions
 - Offline integrated luminosity per

data-taking period: ~2.5% preliminary, best final in 2016 pp: 1.2%

(reach 1% for HL-LHC)

~1% systematic error on luminosity, becomes comparable to other experimental uncertainties

CMS BRIL

Other detectors are also used for the calibration

Beam position monitors (BPM) to measure the orbit of the circulating beams

- Diode ORbit and OScillation (DOROS) detectors
- Arc BPM detectors

Beam current detectors

- DC Current Transformers (DDCT)
- Fast Beam Current Transformers (FBCT)

Measuring ghost and satellites

- LHC Longitudinal Density Monitor (LDM)
- LHCb Beam-Gas Imaging (BGI) using VELO

Van der Meer methodology

- VdM calibration: precise $\sigma_{_{\text{vis}}}$ estimation under special conditions
 - Bunch-by-bunch interaction rate for several different beam separation values in x and y directions
 - Low pileup ≈ 0.5
 - Smaller number of filled bunches with at least 500 ns separation
 - Relatively large beam size
- Results are extrapolated to physics run conditions
 - Additional uncertainties from linearity and long-term stability studies

measurements, corrected for ghost and

satellite charges: $N_1, N_2 \approx 8 \times 10^{10}$

Beam overlap widths ($\Sigma_{x,v}$) and rate (R_0) during head-on collisions

- Rate measurement during two separation scans in x and y directions (affected by background)
- Beam orbit monitoring with BPMs (corrections due to length-scale, orbit movements, beam-beam interactions)

$$\sigma_{\rm vis} = \underbrace{2\pi \sum_{x} \sum_{y} R_{0}}_{N_{1}N_{2}f} \xrightarrow{\text{Assumptions: x-y direction factorization}}_{\text{LHC orbit revolution frequency f = 11245.5 Hz}$$

VdM calibration

CMS PAS LUM-18-002

1250

Y

μm

DOROS

400

200

-200

X

norm4

Collision rates measured as a function of the beam separation

3.5

3.0

[q^π/zH] 2.0

luminosity 1.2

0.5

0.0

0.4

ation [mm

sepai

beam

B1_H

B2 V

08:00

08:00

08:05

08:05

Orbit from beam position monitors

XY

emit5

1300

t [min]

XY

emit4

VdM calibration

- Collision rates measured as a function of the beam separation
 - Rates from luminometers

Normalization (VdM) corrections with the largest uncertainties (more corrections in the backup)

- Orbit drift corrections (0.5-0.8%): from the difference between the nominal and the corrected beam positions
- Beam-beam effects (0.5%): electromagnetic interactions between the two beams leads to optical effect (dynamic beta) and a deflection from the nominal position
- X-Y nonfactorisation (0.5-2%): not completely independent x and y bunch proton density function, calculated from specific separation scans (imaging, offset and diagonal) or by studying the luminous region parameters in standard VdM scans

Corrections under physics conditions and stability Relative luminosity corrections from emittance scans recorded during physics runs since 2017 CMS - PCC/HEOC - HEET/HEOC - PCC/HEET 20 Prelimin • Final selection of the primary luminometer (PCC in Int. Lumi Ratio 2018), its data is used for luminosity estimations. CMS PAS LUM-18-002 • Uncertainty (more in backup) comes from the comparison of the primary and the secondary Integrated Lumi, [fb CMS 50 1.04 Prelimin luminometer measurements. Lumi Ratio by est/second Int. Lumi Ratio by 50 CMS nt. Preliminary 1.04 PAS LUM-18-00 .02 Integrated Lumi. [fb] CMS PAS LUM-18-002 13TeV (2018) 13TeV (2018) _uminosity [fb⁻¹ Mean = 0.9965 Mean = 1.0013 CMS CMS -uminosity [fb⁻ 5 = 0.003 $\sigma = 0.0044$ Prelimina Prelimina 0.96 0.94 Integrated Luminosity [fb⁻¹] Ratio plots to check the long-term stability and linearity 0.94 0.96 0.98 1 1.02 1.04 1.06 1 1.02 1.04 1.06 0.94 0.96 0.98 PCC/HFOC ratio per 50 LS PLT/HFOC ratio per 50 LS

Corrections under physics conditions and stability

Relative luminosity corrections from emittance scans recorded during physics runs since 2017

PAS LUM-18-00

Instruments for Phase-2 luminosity

- Exploitation of the available sub-detector systems
 - \circ Online bunch-by-bunch readout if feasible
- New tracking detector system
 - Inner Tracker Endcap Pixel Detector (TEPX): online pixel cluster counting
 - TEPX Disk 4 Ring1 (D4R1): exclusively for lumi and beam-induced background measurements
 - Outer Tracker Layer 6 (OT L6): counting track stubs (coincidences)
- Extended access to the trigger primitives with 40 MHz frequency (scouting): muons, tracks, calorimeter objects
- Muon barrel: extended bunch-by-bunch resolution
- Fast Beam Condition Monitor: completely new standalone luminometer
 - \circ Asynchronous timing: sub-BX time resolution
 - \circ Good statistical precision, excellent expected linearity
 - \circ No significant degradation due to irradiation and ageing

Overview

- Precise luminosity measurements during Run-2
 - Reaching 1.2% precision in 2016 pp@13 TeV
- Expectations for Run-3: continue understanding the dominant sources of systematics to achieve more precise luminosity calculations with partially rebuilt / upgraded detectors
 - Opportunity to test some of the Phase-2 systems: muon barrel stubs and 40 MHz scouting (muon candidates, potentially calorimeter observables), semi-online pixel cluster counting
- Ambitious upgrade program for Phase-2 HL-LHC: robust systems with improved linearity and constant monitoring
 - Upgraded or completely replaced instrumentation
- Better understanding of the beam parameters, sources and determination of systematics bias
- Ultimate goal in sight: luminosity measurements with ~1% total uncertainty at pileup 200

CMS Collaboration, "The Phase-2 Upgrade of the CMS Beam Radiation Instrumentation and Luminosity Detectors", CMS Technical Proposal <u>CMS-TDR-023</u> CMS Collaboration, "Precision luminosity measurement in proton-proton collisions at 13 TeV in 2015 and 2016 at CMS", <u>EPJC 81, 800 (2021)</u>

Backup

References

- CMS Collaboration, "The CMS experiment at the CERN LHC", <u>JINST 3 (2008) S08004</u>
- CMS Collaboration, "CMS Luminosity Measurement for the 2017 Data-Taking Period at 13 TeV", <u>CMS PAS LUM-17-004</u>
- CMS Collaboration, "CMS Luminosity Measurement for the 2018 Data-Taking Period at 13 TeV", <u>CMS PAS LUM-18-002</u>
- CMS Collaboration, "The Phase-2 Upgrade of the CMS Beam Radiation Instrumentation and Luminosity Detectors", CMS Technical Proposal <u>CMS-TDR-023</u>
- CMS Collaboration, "Precision luminosity measurement in proton-proton collisions at 13 TeV in 2015 and 2016 at CMS", <u>EPJC 81, 800 (2021)</u>
- CMS Collaboration, "BCM1F and Luminosity calibration", <u>CMS-DP-2018-062</u>

VdM (normalization) corrections

- Charge current per bunch, corrected for ghosts and satellites
- Linear and residual orbit drift corrections: from interpolation between measured head-on positions and positions per step during scans
- Length scale: correction of the nominal beam positions to use the CMS length scale extracted from vertex positions
- Beam-beam effects: electromagnetic interaction between the two beams leads to an optical distortion effect on the bunch shapes (dynamic beta) and a deflection from the nominal position
- Background subtraction (luminometer specific): intrinsic noise measured for empty bunch crossings
- X-Y nonfactorisation from specific separation scans or by studying the luminous region parameters in standard VdM scans

Corrections for data-taking (integration)

- Out-of-time corrections (more filled bunches arriving in trains during data-taking)
 - type-1: effect on the next bunch crossing
 - type-2: late hits, nuclear excitations...
 - exponential time development
- Efficiency and noise corrections: reduced response due to irradiation, ageing or other detector specific effect
- Non-linearity corrections
- Cross-detector stability: long-term comparison of the measured luminosities

Uncertainties in Run 2

		Systematic	Uncertainty Run 2 (%) preliminary	Uncertainty in 2016 (%)
Uncertainty on the $\sigma_{_{vis}}$ estimations (VdM)	Normalization	Length scale	0.2–0.3	0.2
		Linear orbit drift	0.1–0.2	0.1
		Residual orbit drift	0.5–0.8	0.5
		x-y nonfactorization	0.5–0.8	0.5
		Beam-beam deflection	0.5	0.5
		Dynamic-β		
		Beam current calibration	0.2	0.2
		Ghosts and satellites	0.1	0.1
		Scan to scan variation	0.3–0.5	0.3
		Bunch to bunch variation	0.1	0.1
		Cross-detector consistency	0.5–0.6	0.5
		Background (detector specific)	0.1	0.1
Coming from the extrapolation of the		Out-of-time effects (detector specific)	0.3–0.4	0.3
calibration to high pileup	Integration	Cross-detector stability	0.5–0.6	0.5
conditions, and from the		Linearity	0.3–1.5	0.3
(data taking)		CMS deadtime	< 0.1	< 0.1
(uata-taking)		Total	1.2–2.5	1.2

ATTILA RADL PRECISION LUMINOSITY MEASUREMENT AT THE CMS EXPERIMENT

Phase-2 expectations: ~1%

total systematic uncertainty