Dark Matter Axions in the Early Universe with a Period of Increasing Temperature

> Jacek Osiński (AstroCeNT, Warsaw, Poland) with Paola Arias, Nicolás Bernal, and Leszek Roszkowski arXiv:2207.07677

> XI International Conference on New Frontiers in Physics

6 Sep. 2022

josin@camk.edu.pl

NICOLAUS COPERNICUS ASTRONOMICAL CENTER OF THE POLISH ACADEMY OF SCIENCES

Introduction

- QCD axions are a promising dark matter (DM) candidate
- Many ongoing observational/experimental searches targeting a variety of couplings
- Part of their success as DM candidates is the misalignment mechanism

https://cajohare.github.io/AxionLimits/

Axion misalignment mechanism

- Initial value of angle θ fixed after Peccei-Quinn (PQ) breaking at a high scale f_a
- Axion field (*a*) frozen as long as Hubble rate > axion mass

Axion mass:

$$m(T) \approx m_a \begin{cases} \left(\frac{T_{\text{QCD}}}{T}\right)^4 & T > T_{\text{QCD}} \\ 1 & T < T_{\text{QCD}} \end{cases}$$

Axion misalignment mechanism

- As temperature of Universe cools, axion mass increases while Hubble rate drops
- Axion oscillation begins:

"crossing" condition: $3 H(T_{osc}) \approx m(T_{osc})$

 Energy density averages to matter → "standard mass window" for correct DM relic abundance assuming standard RD history:

$$10^{-6} \text{ eV} \lesssim m_a \lesssim 10^{-5} \text{ eV}$$
 for $0.5 \lesssim \theta_i \lesssim \pi/\sqrt{3}$

Notice that this mechanism depends on thermal history
 → nonstandard cosmologies (NSCs) can alter axion production

$$10^{-6} \text{ eV} \lesssim m_a \lesssim 10^{-5} \text{ eV}$$
 for $0.5 \lesssim \theta_i \lesssim \pi/\sqrt{3}$

Notice that this mechanism depends on thermal history
 → nonstandard cosmologies (NSCs) can alter axion production

Nonstandard cosmologies (NSCs)

- Usual assumption is radiation domination (RD) between end of inflation and start of BBN
- Many well-motivated deviations: inflationary reheating, early matter domination (MD) from moduli, kination, etc. (for a review, see Allahverdi et al. 2006.16182) 1/aH
- Must end before $T_{\rm BBN} \sim {\rm MeV}$
- Can significantly affect early processes

NSCs – increasing temperature

- Typically temperature decreases during NSC (though can be at a different rate)
- Particularly interesting class of alternate histories involves a period of increasing temperature
- Can be achieved in a variety of models where the decay rate of dominating component has explicit scale-factor (R) or temperature (T) dependence: Γ(R,T)
- Examples: higher-order operators, shapes of potentials, fielddependent mass, interaction with thermal background

Co et al. 2007.04328; Ahmed et al. 2111.06065; Garcia et al. 2012.10756; Mukaida+Nakayama 1208.3399

Our scenario

- NSC history with intervening <u>matter domination</u> (MD) by scalar field ϕ : Inflation – RD – MD – RD (BBN)
- Period of increasing temperature from time-dependent decay rate Γ_{ϕ}
- Axion production from <u>misalignment</u> in this background
- Define parameter x during increasing-temperature period:

$$\Gamma_{\phi} \propto R^{-x} \qquad T \propto R^{\frac{-3-2x}{8}}$$

• Temperature increases for x < -3/2

Background energy density evolution

• Three example histories:

Standard RD (---) NSC x = 0 (____) NSC x = -23/2 (_____

• Adiabatic-nonadiabatic transition in NSC at $R = R_c$ as decay of ϕ affects radiation evolution

- Lowest temperature reached during NSC is now T_c rather than reheat temperature $T_{\rm fin} \rightarrow$ require $T_c > T_{\rm BBN} \sim {\rm MeV}$
- Same temperature can occur multiple times

Misalignment with three crossings

- First crossing (R_1) : oscillations begin as normal
- Second crossing (R₂): Hubble friction restored, axion evolution dependent on kinetic/potential energy
- Third crossing (R₃): oscillations resume from a new configuration (smaller angle, velocity tending toward zero)

Misalignment with three crossings

- Misalignment is altered by restoration of Hubble friction
- Second period of oscillation with new "initial" condition
- Resultant axion energy density is smaller due to entropy injection and smaller amplitude
- \rightarrow Smaller mass for axion DM

Extended DM axion mass window

- Mass window for observed DM abundance extended toward smaller values
- Lowest extent determined by θ_i and x
 - $\alpha \approx 0$: kinetic $\alpha \approx 1$: potential

Summary

- Axion misalignment mechanism depends on the cosmological history through m and ${\cal H}$
- NSC period with increasing temperature can significantly alter axion production $\rightarrow H(t) \approx m(t)$ up to three times
- Hubble friction can be temporarily restored → second period of oscillation with new initial condition
- Viable axion mass window for observed DM abundance extended to include smaller masses

Thank you!

