The KDK Experiment: A Measurement of ⁴⁰K Relevant for Rare-Event Searches and Geochronology

Lilianna Hariasz

Queen's University On behalf of the KDK Collaboration

August 31, 2022

ICNFP 2022, Kolymbari, Crete

- Naturally-occuring radioactive isotope $(0.0117(1)\%^{[2]}$ $(0.0117(1)\%^{[2]}$ $(0.0117(1)\%^{[2]}$ ⁴⁰K in ^{nat}K)
- E.C. \rightarrow g.s. (I_{EC^0}) is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

1. Rare-event searches

- Contaminant in NaI volumes (e.g. DAMA/LIBRA, SABRE, COSINUS)
- Irreducible background at $\sim 3 \,\text{keV}$ [\[3\]](#page-19-2)

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. (I_{EC^0}) is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

2. Geochronology

- Lifetime $\sim 10^9$ y
- K-Ar (& Ar-Ar) dating dependent on ⁴⁰K decay scheme [\[4\]](#page-20-0)
- Ill-known I_{EC^0} becoming an important systematic

- Naturally-occuring radioactive isotope
- $\text{E.C.} \rightarrow \text{g.s.}$ (I_{EC^0}) is ill-known. $\textbf{Predictions: } \sim (0.0-0.3)\%$

3. Nuclear Theory

- I_{EC^0} is the only known third-forbidden unique E.C. decay
- 3FU transition can inform calculated $0\nu bb$ half-lives (estimate quenching of weak axial-vector coupling).
- Theoretical predictions vary widely

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. (I_{EC^0}) is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

The KDK Collaboration

International collaboration making the first measurement of Potassium-40's rare I_{EC^0} decay Instrumentation paper (NIM A, Stukel et al.,

2021) available [here](https://doi.org/10.1016/j.nima.2021.165593)

KDK Setup I

- \bullet I_{EC^0} event: X-ray/Auger
- $I_{\text{EC*}}$ event: X-ray/Auger & gamma

Inner Silicon Drift Detector (SDD)† $(MPP/HLL$ Munich); ~ 10 g Outer Modular Total Absorption Spectrometer (MTAS) (Oak Ridge *National Laboratory*); \sim 1,000 kg

KDK measures $\rho = I_{EC} \rho / I_{EC}$ *

†or KSI

KDK Setup II ([https://doi.org/10.1016/j.nima.2021.16559](https://doi.org/10.1016/j.nima.2021.165593))

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

To discriminate I_{EC^0} from I_{EC^*} γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with ratio of Geant4-simulated values

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

To discriminate I_{EC^0} from I_{EC^*} γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with Geant4-simulated values.

Scale 835 keV gamma to $1460\,\mathrm{keV}$ $(^{40}\mathrm{K}),$ correct for dead time:

(1 µs CW): Measured 54 Mn 97.75(1)\% \longrightarrow 40 K 97.89(6)%

Testing Methods - ⁶⁵Zn

Test methodology for obtaining $\rho = I_{EC} / I_{EC^*}$ via ⁶⁵Zn, similar decay

SDD Spectra - 2.00 us CW

Resolution 198 eV FWHM at 8 keV

Testing Methods - ⁶⁵Zn

Fit coincident & uncoincident spectra (left) simultaneously

Fit accounts for false positives and negatives Notably: < 100% MTAS efficiency, I_{EC^0} coincidence with MTAS background

Testing Methods - ⁶⁵Zn

- False negative correction removes unphysical CW-dependency
- Finalizing systematics

- \bullet Use ⁶⁵Zn analysis as a template
- See signal and fluorescence in coincident spectrum
- Sensitivity depends on number of I_{EC^0} decays observed

⁴⁰K: Predictions, Sensitivity

Theory and Projected KDK Sensitivity

⁴⁰K: Predictions, Sensitivity

Theory and Projected KDK Sensitivity

- \bullet ⁴⁰K measurement applicable to many fields: rare-event searches, geochronology, nuclear theory
- KDK is making a measurement of ${}^{40}K$, along with other isotopes
- \bullet ⁴⁰K MEASUREMENT COMPLETED with result remaining internal, publication preparation in final stages
- Stay tuned for the final value in the coming weeks

Thank you to the KDK Collaboration

N. Brewer¹, J. Carter², H. Davis³, P.C.F. Di Stefano⁴, A. Fijałkowska^{1,5,6}, Z. Gai¹, R. Grzywacz^{1,3,5}, J. Kostensalo^{7,8}, P. Lechner⁹, Y. Liu¹, E. Lukosi³, M. Mancuso¹⁰, J. Ninkovic⁹, F. Petricca¹⁰, B.C. Rasco^{1,3}, C. Rouleau¹, K.P. Rykaczewski¹, D. Stracener¹, M. Stukel⁴, J. Suhonen⁸, M. Wolińska-Cichocka^{1,6}

Oak Ridge National Laboratory, Oak Ridge, TN, USA Berkeley Geochronology Center, Berkeley, CA, USA University of Tennessee, Knoxville, TN, USA Queen's University, Kingston, Ontario, Canada Joint Institute for Nuclear Physics and Applications, Oak Ridge, TN, U.S.A University of Warsaw, Warsaw, Poland Natural Resources Institute Finland, Joensuu, Finland ⁸University of Jyväskyla, Jyväskyla, Finland MPG Semiconductor Laboratory, Munich, Germany Max Planck Institute for Physics, Munich, Germany

Technical & Electronic Support: M. Constable, F. Retiere (TRIUMF), K. Dering⁴, P. Davis, University of Alberta.

References I

[1] M. Stukel, B. C. Rasco, N. T. Brewer, P. C. F. Di Stefano, K. P. Rykaczewski, H. Davis, E. D. Lukosi, L. Hariasz, M. Constable, P. Davis, K. Dering, A. Fijałkowska, Z. Gai, K. C. Goetz, R. K. Grzywacz, J. Kostensalo, J. Ninkovic, P. Lechner, Y. Liu, M. Mancuso, C. L. Melcher, F. Petricca, C. Rouleau, P. Squillari, L. Stand, D. W. Stracener, J. Suhonen, M. Wolińska-Cichocka, and I. Yavin.

A novel experimental system for the kdk measurement of the $40k$ decay scheme relevant for rare event searches.

arXiv:2012.15232, 2020.

[2] Jun Chen.

Nuclear data sheets for $A = 40$.

Nuclear Data Sheets, 140:1–376, 2017.

[3] Josef Pradler, Balraj Singh, and Itay Yavin.

On an unverified nuclear decay and its role in the dama experiment. Physics Letters B, 720(4-5):399–404, 2013.

[4] Jack Carter, Ryan B Ickert, Darren F Mark, Marissa M Tremblay, Alan J Cresswell, and David CW Sanderson.

Production of 40 Ar by an overlooked mode of 40 K decay with implications for K-Ar geochronology.

Geochronology, 2(2):355–365, 2020.

[5] E. Browne and J.K. Tuli.

Nuclear Data Sheets for $A = 65$.

Nuclear Data Sheets, 111(9):2425–2553, September 2010.

[6] M. M. B´e, V. Chist´e, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, and D. MacMahon. Table of Radionuclides (vol. 3–A= 3 to 244).

Monographie BIPM, 5, 2006.

Extra Slides

Impact of Background on Annual Modulation

Total rate:

$$
R(t) = B_0 + S_0 + S_m f(t)
$$

 B_0 : background, including ⁴⁰K S_0 : unmodulated dark matter $S_m f(t)$: time-dependent dark matter signal $R_0 \equiv B_0 + S_0$: measured time-independent rate

Modulation fraction:

$$
s_m = \frac{S_m}{S_0} = \frac{S_m}{R_0 - B_0}
$$

 B_0 affects s_m result, while feasibility can be assessed via theoretical DM models

DAMA/LIBRA Modulation

Bernabei, Rita, Pierluigi Belli, Andrea Bussolotti, Fabio Cappella, Vincenzo Caracciolo, Riccardo Cerulli, Chang-Jiang Dai et al. "First model independent results from DAMA/LIBRA–phase2." Universe 4, no. 11 (2018): 116.

From [this link](http://websites.umich.edu/~ners311/CourseLibrary/bookchapter15.pdf)

 40 K \rightarrow 40 Ar g.s. or 40 Ca = unique 3rd forbidden; 40 K \rightarrow 40 Ar exc. = unique 1st forbidden; ⁵⁴Mn \rightarrow ⁵⁴Cr g.s. = unique 2nd forbidden; ⁵⁴Mn \rightarrow ⁵⁴Cr exc. = allowed; ⁶⁵Zn all allowed.

From [this link](http://websites.umich.edu/~ners311/CourseLibrary/bookchapter15.pdf)

- Alternate configuration
- \bullet Combines x-ray detector $+$ source
- \bullet Benefits from higher 40 K composition
- Currently, limitations in PMT modelling lead to difficulty in obtaining MTAS gamma-tagging efficiency

Fig. 11. $7 \times 7 \times 19.9$ mm³ rectangular KSI sample wrapped in 400 µm of teflon sealed inside an aluminum housing with a nitrogen atmosphere placed in the center with a custom 3D printed polyethylene bracket holding the setup together.

From [this link](https://geoinfo.nmt.edu/labs/argon/methods/home.html)

$$
t = \frac{1}{\lambda} \ln \left[\frac{{}^{40}Ar^*}{{}^{40}K} \left(\frac{\lambda}{\lambda_e} \right) + 1 \right]
$$

where:
$$
t = age
$$

\n $\lambda = total decay constant of {}^{40}K$
\n $\lambda_e = decay constant of {}^{40}K to {}^{40}Ar$
\n ${}^{40}Ar^* = {}^{40}Argon produced by in situ decay of {}^{40}K (Daughter)$
\n ${}^{40}K = {}^{40}Postassium (Parent)$

Geochronology - Ar-Ar Dating

From [this link](https://geoinfo.nmt.edu/labs/argon/methods/home.html)

$$
t = \frac{1}{\lambda} \ln \left(\frac{^{40}Ar^*}{^{39}Ar} J + 1 \right)
$$

where: $t = age$ λ = total decay constant of ⁴⁰K $J =$ neutron flux constant ⁴⁰Ar^{*} = ⁴⁰Argon produced by *in situ* decay of ⁴⁰K (Daughter) ³⁹Ar = ³⁹Argon produced by neutron activation of ³⁹K (Parent)

Note: total ⁴⁰K lifetime is calculated from partial half lives and branching ratios, thus λ is dependent on I_{EC^0} .

⁵⁴Mn MTAS Spectrum Fit

- Blue: 54 Mn 4 µs data
- Red: total fit, with components:
	- Black: simulated 835 keV spectrum
	- Teal: measured MTAS background
	- Green: gamma+BG convolution (black+teal)
	- Pink: gamma+gamma convolution (black+black)

⁶⁵Zn Coincidence Histogram

SDD/MTAS Coincidence - 65Zn 6г÷ MTAS Energy [MeV] 10^{4} MTAS Energy [MeV] 5|÷ 10^{3} ⊣ 4|− 3⊢. 10^2 2|€ 10 $1 -$ G324 1 ັດ 0 2 4 6 8 10 12 14 SDD Energy [keV]

$65Zn$ fit to MTAS spectrum

⁶⁵Zn - 3rd Electron Capture Branch

- Electron capture branch to the 770 keV level
- Intensity per 100 for $770 \,\text{keV} =$ 0.00269(22)
- Intensity per 100 for $330 \,\text{keV} =$ 0.00254(18)
- This means decay directly to 770 keV occurs $0.00015(28)$ % of the time
- The systematic effect of the intermediate 65 Cu energy level on ρ is smaller than the statistical error

Implicit ${}^{65}Zn$ ρ Values from Literature

Branching ratios are calculated from measurements and theoretical values. No experimental result has probed electron-capture to the ground state (\equiv EC) and excited state (\equiv EC^{*}) branches simultaneously.

Agreement within 2σ between National Nuclear Data Center [\[5\]](#page-20-1) and Table of Radionuclides [\[6\]](#page-20-2).

- 19 NaI(Tl) hexagonal volumes
- $\bullet \sim 53$ cm \times 18 cm
- Inner, Middle Outer: one PMT at each end
- Center: 6 PMTs on each end, hole through center for source
- total mass \sim 1 ton
- $\bullet \sim 4\pi$ sr coverage
- surrounded by lead shielding

SDD Details

- Increasingly-biased p^+ rings
- Planar cathode
- \bullet Central n^+ anode is at potential minimum
- Gate of field-effect transistor (FET) connected to anode

MTAS Insert

- \bullet Contains SDD + source
- 2mm width except for endcap
- Endcap is 30cm long, 0.63mm thick to reduce scattering

MTAS BG

Peaks: 40 K (1460 keV), 214 Bi (1760 keV), 208 Tl (2614 keV), 127 I & 23 Na neutron captures (6800 keV).

