The KDK Experiment: A Measurement of ⁴⁰K Relevant for Rare-Event Searches and Geochronology

Lilianna Hariasz

Queen's University On behalf of the KDK Collaboration

August 31, 2022

ICNFP 2022, Kolymbari, Crete

- Naturally-occuring radioactive isotope $(0.0117(1)\%^{[2]} 40$ K in ^{nat}K)
- E.C. \rightarrow g.s. $(I_{\rm EC^0})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

1. Rare-event searches

- Contaminant in NaI volumes (e.g. DAMA/LIBRA, SABRE, COSINUS)
- Irreducible background at $\sim 3\,{\rm keV}$ [3]

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{\rm EC^0})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

2. Geochronology

- Lifetime $\sim 10^9 {\rm ~y}$
- K-Ar (& Ar-Ar) dating dependent on ⁴⁰K decay scheme [4]
- Ill-known $I_{\rm EC^0}$ be
coming an important systematic

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{{\bf EC}^0})$ is ill-known. Predictions: $\sim ({\bf 0.0-0.3})\%$

3. Nuclear Theory

- $I_{\rm EC^0}$ is the only known third-forbidden unique E.C. decay
- 3FU transition can inform calculated $0\nu bb$ half-lives (estimate quenching of weak axial-vector coupling).
- Theoretical predictions vary widely

- Naturally-occuring radioactive isotope
- E.C. \rightarrow g.s. $(I_{\rm EC^0})$ is ill-known. Predictions: $\sim (0.0 - 0.3)\%$

The KDK Collaboration

International collaboration making the first measurement of Potassium-40's rare I_{EC^0} decay

Instrumentation paper (NIM A, Stukel et al., 2021) available **here**

KDK Setup I

• $I_{\rm EC^0}$ event: X-ray/Auger • I_{EC*} event: X-ray/Auger & gamma

Inner Silicon Drift Detector $(SDD)^{\dagger}$ (MPP/HLL Munich); ~ 10 g Outer Modular Total Absorption Spectrometer (MTAS) (Oak Ridge National Laboratory); ~ 1,000 kg

KDK measures $\rho = I_{EC^0} / I_{EC^*}$

 † or KSI

$\label{eq:KDK} {\rm KDK \; Setup \; II \; (\; \; https://doi.org/10.1016/j.nima.2021.16559 \;) }$

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

To discriminate I_{EC^0} from I_{EC^*} γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with ratio of Geant4-simulated values

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

Leading Systematic - MTAS Gamma-Tagging Efficiency, ⁵⁴Mn

To discriminate I_{EC^0} from I_{EC^*} γ -tagging efficiency must be very well-known.

Measurement of 54 Mn γ efficiency is combined with Geant4-simulated values.

Scale 835 keV gamma to 1460 keV (⁴⁰K), correct for dead time:

(1 µs CW): Measured ⁵⁴Mn 97.75(1)% \longrightarrow ⁴⁰K 97.89(6)%

Testing Methods - 65 Zn

Test methodology for obtaining $\rho = I_{\rm EC^0}/~I_{\rm EC^*}$ via $^{65}{\rm Zn},$ similar decay

SDD Spectra - 2.00 us CW

Resolution $198\,\mathrm{eV}$ FWHM at $8\,\mathrm{keV}$

Testing Methods - 65 Zn

Fit coincident & uncoincident spectra (left) simultaneously

Fit accounts for false positives and negatives Notably: < 100% MTAS efficiency, $I_{\rm EC^0}$ coincidence with MTAS background

Testing Methods - 65 Zn

- False negative correction removes unphysical CW-dependency
- Finalizing systematics

- Use 65 Zn analysis as a template
- See signal and fluorescence in coincident spectrum
- Sensitivity depends on number of $I_{\mathbf{EC}^0}$ decays observed

⁴⁰K: Predictions, Sensitivity

Theory and Projected KDK Sensitivity

⁴⁰K: Predictions, Sensitivity

Theory and Projected KDK Sensitivity

- 40 K measurement applicable to many fields: rare-event searches, geochronology, nuclear theory
- $\bullet\,$ KDK is making a measurement of $^{40}{\rm K},$ along with other isotopes
- ⁴⁰K MEASUREMENT COMPLETED with result remaining internal, publication preparation in final stages
- Stay tuned for the final value in the coming weeks

Thank you to the KDK Collaboration

N. Brewer¹, J. Carter², H. Davis³, P.C.F. Di Stefano⁴, A. Fijałkowska^{1,5,6}, Z. Gai¹,
R. Grzywacz^{1,3,5}, J. Kostensalo^{7,8}, P. Lechner⁹, Y. Liu¹, E. Lukosi³, M. Mancuso¹⁰,
J. Ninkovic⁹, F. Petricca¹⁰, B.C. Rasco^{1,3}, C. Rouleau¹, K.P. Rykaczewski¹,
D. Stracener¹, M. Stukel⁴, J. Suhonen⁸, M. Wolińska-Cichocka^{1,6}

¹Oak Ridge National Laboratory, Oak Ridge, TN, USA
²Berkeley Geochronology Center, Berkeley, CA, USA
³University of Tennessee, Knoxville, TN, USA
⁴Queen's University, Kingston, Ontario, Canada
⁵Joint Institute for Nuclear Physics and Applications, Oak Ridge, TN, U.S.A
⁶University of Warsaw, Warsaw, Poland
⁷Natural Resources Institute Finland, Joensuu, Finland
⁸University of Jyväskyla, Jyväskyla, Finland
⁹MPG Semiconductor Laboratory, Munich, Germany
¹⁰Max Planck Institute for Physics, Munich, Germany

References I

 M. Stukel, B. C. Rasco, N. T. Brewer, P. C. F. Di Stefano, K. P. Rykaczewski, H. Davis, E. D. Lukosi, L. Hariasz, M. Constable, P. Davis, K. Dering, A. Fijałkowska, Z. Gai, K. C. Goetz, R. K. Grzywacz, J. Kostensalo, J. Ninkovic, P. Lechner, Y. Liu, M. Mancuso, C. L. Melcher, F. Petricca, C. Rouleau, P. Squillari, L. Stand, D. W. Stracener, J. Suhonen, M. Wolińska-Cichocka, and I. Yavin.

A novel experimental system for the kdk measurement of the $^{40}{\rm k}$ decay scheme relevant for rare event searches.

arXiv:2012.15232, 2020.

[2] Jun Chen.

Nuclear data sheets for A = 40.

Nuclear Data Sheets, 140:1–376, 2017.

[3] Josef Pradler, Balraj Singh, and Itay Yavin.

On an unverified nuclear decay and its role in the dama experiment. *Physics Letters B*, 720(4-5):399–404, 2013.

[4] Jack Carter, Ryan B Ickert, Darren F Mark, Marissa M Tremblay, Alan J Cresswell, and David CW Sanderson.

Production of 40 Ar by an overlooked mode of 40 K decay with implications for K-Ar geochronology.

Geochronology, 2(2):355-365, 2020.

[5] E. Browne and J.K. Tuli.

Nuclear Data Sheets for A = 65.

Nuclear Data Sheets, 111(9):2425–2553, September 2010.

[6] M. M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, and D. MacMahon.

Table of Radionuclides (vol. 3-A=3 to 244).

Monographie BIPM, 5, 2006.

Extra Slides

Impact of Background on Annual Modulation

Total rate:

$$R(t) = B_0 + S_0 + S_m f(t)$$

 B_0 : background, including ⁴⁰K S_0 : unmodulated dark matter $S_m f(t)$: time-dependent dark matter signal $R_0 \equiv B_0 + S_0$: measured time-independent rate

Modulation fraction:

$$s_m = \frac{S_m}{S_0} = \frac{S_m}{R_0 - B_0}$$

 B_0 affects s_m result, while feasibility can be assessed via theoretical DM models

DAMA/LIBRA Modulation

Bernabei, Rita, Pierluigi Belli, Andrea Bussolotti, Fabio Cappella, Vincenzo Caracciolo, Riccardo Cerulli, Chang-Jiang Dai et al. "First model independent results from DAMA/LIBRA-phase2." Universe 4, no. 11 (2018): 116.

From this link

Type of Transition	Selection Rules	$L_{e\nu}$	$\Delta \pi$?	ft
superallowed	$\Delta I = 0, \pm 1^*$	0	no	$1 \times 10^{3} - 1 \times 10^{4}$
allowed	$\Delta I = 0, \pm 1$	0	no	$2 imes 10^3$ – 10^6
1 st forbidden	$\Delta I = 0, \pm 1$	1	yes	$10^{6} - 10^{8}$
unique ^{**} 1 st forbidden	$\Delta I = \pm 2$	1	yes	$10^8 - 10^9$
2 nd forbidden	$\Delta I = \pm 1^{***}, \pm 2$	2	no	$2 \times 10^{10} 2 \times 10^{13}$
unique 2 nd forbidden	$\Delta I = \pm 3$	2	no	10^{12}
3 rd forbidden	$\Delta I = \pm 2^{***}, \pm 3$	3	yes	10^{18}
unique 3 rd forbidden	$\Delta I = \pm 4$	3	yes	4×10^{15}
4 th forbidden	$\Delta I = \pm 3^{***}, \pm 4$	4	no	10^{23}
unique 4 th forbidden	$\Delta I = \pm 5$	4	no	10^{19}

 $^{40}\mathrm{K} \rightarrow ^{40}\mathrm{Ar}$ g.s. or $^{40}\mathrm{Ca} =$ unique 3rd forbidden; $^{40}\mathrm{K} \rightarrow ^{40}\mathrm{Ar}$ exc. = unique 1st forbidden; $^{54}\mathrm{Mn} \rightarrow ^{54}\mathrm{Cr}$ g.s. = unique 2nd forbidden; $^{54}\mathrm{Mn} \rightarrow ^{54}\mathrm{Cr}$ exc. = allowed; $^{65}\mathrm{Zn}$ all allowed.

From this link

Nomenclature	Meaning
$ec{L},L$	Total orbital angular momentum of the $e\nu$ pair
$ec{S},S$	Total spin angular momentum of the $e\nu$ pair
Fermi (F) transition	$e\nu$ intrinsic spins anti-align, $S = 0$
Gamow-Teller (GT) transition	$e\nu$ intrinsic spins align, $S = 1$
Superallowed	The nucleon that changed form, did not change shell-model orbital.
Allowed	$L = 0$ transition. $M_{if}^0 \neq 0$. See (15.27).
$n^{\rm th}$ forbidden	The $e\nu$ pair carry off n units of orbital angular momentum
Unique	\vec{L} and \vec{S} are aligned.

- Alternate configuration
- Combines x-ray detector + source
- Benefits from higher ⁴⁰K composition
- Currently, limitations in PMT modelling lead to difficulty in obtaining MTAS gamma-tagging efficiency

Fig. 11. $7 \times 7 \times 19.9 \text{ mm}^3$ rectangular KSI sample wrapped in 400 µm of teflon sealed inside an aluminum housing with a nitrogen atmosphere placed in the center with a custom 3D printed polyethylene bracket holding the setup together.

From this link

$$t = \frac{1}{\lambda} \ln \left[\frac{{}^{40}\text{A}r^{*}}{{}^{40}\text{K}} \left(\frac{\lambda}{\lambda_{e}} \right) + 1 \right]$$

where:
$$t = age$$

 $\lambda = total decay constant of {}^{40}K$
 $\lambda_e = decay constant of {}^{40}K to {}^{40}Ar$
 ${}^{40}Ar^* = {}^{40}Argon produced by in situ decay of {}^{40}K (Daughter)$
 ${}^{40}K = {}^{40}Potassium (Parent)$

Geochronology - Ar-Ar Dating

From this link

$$t = \frac{1}{\lambda} \ln \left(\frac{{}^{40}\text{A}r^{*}}{{}^{39}\text{A}r} \text{ J} + 1 \right)$$

where: t = age $\lambda = total decay constant of {}^{40}K$ J = neutron flux constant ${}^{40}Ar^* = {}^{40}Argon produced by$ *in situ* $decay of {}^{40}K (Daughter)$ ${}^{39}Ar = {}^{39}Argon produced by neutron activation of {}^{39}K (Parent)$

Note: total $^{40}{\rm K}$ lifetime is calculated from partial half lives and branching ratios, thus λ is dependent on $I_{{\rm EC}^0}.$

⁵⁴Mn MTAS Spectrum Fit

- \bullet Blue: $^{54}\mathrm{Mn}$ 4 $\mu\mathrm{s}$ data
- Red: total fit, with components:
 - Black: simulated 835 keV spectrum
 - Teal: measured MTAS background
 - Green: gamma+BG convolution (black+teal)
 - Pink: gamma+gamma convolution (black+black)

⁶⁵Zn Coincidence Histogram

SDD/MTAS Coincidence - 65Zn MTAS Energy [MeV] 10⁴ 10³ - $5/2^{-1}$ $1/2^{-}$ 10² 1115.539(2) keV $3/2^{-}$ -10 10 12 14 SDD Energy [keV] 2 6 8

65 Zn fit to MTAS spectrum

$^{65}\mathbf{Zn}$ - 3rd Electron Capture Branch

- Electron capture branch to the 770 keV level
- Intensity per 100 for 770 keV = 0.00269(22)
- Intensity per 100 for 330 keV = 0.00254(18)
- This means decay directly to 770 keV occurs 0.00015(28) % of the time
- The systematic effect of the intermediate 65 Cu energy level on ρ is smaller than the statistical error

Implicit 65 Zn ρ Values from Literature

Branching ratios are calculated from measurements and theoretical values. No experimental result has probed electron-capture to the ground state (\equiv EC) and excited state (\equiv EC*) branches simultaneously.

	National Nuclear	Table of
	Data Centre	Radionuclides
$I_{\rm EC^0}$	48.54(7)%	48.35(11)%
$I_{\rm EC^*}$	50.04(10)%	50.23(11)%
ρ	0.9700(24)	0.9626(30)

Agreement within 2σ between National Nuclear Data Center [5] and Table of Radionuclides [6].

- 19 NaI(Tl) hexagonal volumes
- $\bullet\,\sim 53~{\rm cm}\,\times\,18~{\rm cm}$
- Inner, Middle Outer: one PMT at each end
- Center: 6 PMTs on each end, hole through center for source
- total mass ~ 1 ton
- $\sim 4\pi$ sr coverage
- surrounded by lead shielding

SDD Details

- Increasingly-biased p⁺ rings
- Planar cathode
- $\bullet\,$ Central n^+ anode is at potential minimum
- Gate of field-effect transistor (FET) connected to anode

MTAS Insert

- Contains SDD + source
- 2mm width except for endcap
- Endcap is 30cm long, 0.63mm thick to reduce scattering

MTAS BG

Peaks: $^{40}{\rm K}$ (1460 keV), $^{214}{\rm Bi}$ (1760 keV), $^{208}{\rm Tl}$ (2614 keV), $^{127}{\rm I}$ & $^{23}{\rm Na}$ neutron captures (6800 keV).

