

FIRST RESULTS FOR SEARCHES OF EXOTIC DECAYS WITH NA62 IN BEAM-DUMP MODE

Stefan Ghinescu*

on behalf of the NA62 collaboration

XI International Conference on New Frontiers in Physics

September 10, 2022

^{*} stefan.alexandru.ghinescu@cern.ch

Search Motivation

- Several extensions of the Standard Model (SM):
 - Vector portal → Dark Photons (DP)
 - Scalar portal → Dark Scalars
 - Neutrino portal → Heavy Neutral Leptons
 - Axion portal → Axion-like particles
- The Dark Photon model introduces a new vector field $F'_{\mu\nu}$ symmetric under U(1) transformations which feebly interacts with the SM fields.
- Kinetic missing interaction with the SM hypercharge:

$$\mathcal{L} \subset -\epsilon \frac{1}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$$

The mass of the DP, $M_{A'}$, and the coupling, ϵ , are free parameters

Decay width dominated by lepton-antilepton final states for $M_{A^{\prime}} < 700 \; {\rm MeV}/c^2$

The NA62 experiment at the CERN SPS

Broad physics program:

- Main goal: measurement of the $K^+ \to \pi^+ \nu \bar{\nu}$ branching ratio
- Rare and forbidden decays
- Precision measurements
- Exotic searches (beam-dump mode):
 DP, HNLs, ALPs

Primary beam:

400 GeV/c SPS protons, $\sim 10^{12} \text{p/sec}$

Timeline of the NA62 experiment

Secondary beam:

75 GeV/c $K^+(6\%)$, $\pi^+(70\%)$, p(24%) ~750MHz at GTK

Past results:

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4 {\rm stat}} \pm 0.9_{\rm syst}) \times 10^{-11} [{\rm NA62, JHEP06}~(2021)~093]$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (8.4 \pm 1.0) \times 10^{-11} [{\rm Buras~et~al., JHEP11}~(2015)~033]$

NA62 in beam-dump mode

STRAW: tracking of charged particles;

NewCHOD: fast detector used for trigger ($\mathcal{O}(600 \mathrm{ps})$)

MUV3: muon veto/ID detector

LKr: electromagnetic calorimeter for PID and photon identification

LAV: (Large angle photon veto detectors)

Conditions for beam-dump data taking:

- TAXes closed and target removed
- Improved sweeping from dipoles downstream of TAXes
- Beam intensity 1.5 times higher than the nominal

Data sample

Collected (1.4 \pm 0.28) \pm 10¹⁷POT in \sim 10 days of data taking

POT measured by beam secondary emission monitor

Two trigger lines for charged final states:

- Single-track trigger asking for one hit in the NewCHOD: $\mathbf{Q1}/\mathrm{D_S}(\mathrm{D_S}=20)~(14\text{kHz})$
- Two-track trigger, asking for two hits in the NewCHOD: H2 (18kHz)

One control trigger based on the LKr, used to measure the efficiency of the NewCHOD-based trigger (4kHz)

Q1 trigger efficiency = 99.8% H2 trigger efficiency = 98%

Expected sensitivity: geometrical acceptance

Two production mechanisms are in action in proton-nucleus interaction scenario:

- Bremsstrahlung production: $pN \rightarrow XA'$
- Meson-mediated production: $pN \to XM$, $M \to A'\gamma(\pi^0)$, where $M = \pi^0$, ω , ρ etc.

*The grey underlying area is the one adapted by PBC and originally based on: Phys. Rev. Lett. 126, no. 18, 181801(2021)

Analysis Strategy

Signal signature:

Lepton-antilepton vertex reconstructed withing the NA62 fiducial volume and a primary vertex in the direction of the leptonantilepton pair and the proton beam at the TAXes

Event selection:

- Reconstructed track quality
- Track timing coincidence with the trigger
- Muon identification with calorimeter and muon detector
- No in-time activity at large angle veto (LAV) to reduce possible selection of vertices by interaction of incoming muons with the material in the LAVs
- Signal region selection

CR and SR kept blind up to analysis approval

CR = control region SR = signal region

 ${\rm CDA_{TAX}}$: closest distance of approach between the beam direction at the TAX entrance and the leptonantilepton pair direction. $\sigma_{\rm CDA}=7$ mm.

 Z_{TAX} : longitudinal position of the vertex. σ_Z = 5.5 mm

SR:

- $6 < Z_{TAX} < 40 \text{ m}$
- $CDA_{TAX} < 20 \text{ mm}$

Distribution of track time difference

Combinatorial background

Before LAV veto is applied (CR and SR blinded)

Final events selected (CR and SR blinded)

Improvement w.r.t. 2018 data taking

2018 data $\rightarrow 2.6 \times 10^{16} \text{ POT}$

2021 data → 1.4×10^{17} POT

Selection efficiency and signal yield

$$N_{\rm exp} = POT \times \chi(pp \to A') \times \mathcal{B}(A' \to \mu\mu) \times P_{\rm rd}(\epsilon) \times A_{\rm acc} \times A_{\rm trig}$$

Invariant mass resolution

Background

Combinatorial background

- Background from random superposition of two uncorrelated "halo" muons
- Selected single tracks in a data sample orthogonal to the one used for the analysis
- Track pairs are artificially built to emulate a random superposition
- Each track pair has a weight independent on the rate to account for the 10 ns time window

Prompt (in-time) background

- Background from secondaries of a muon interaction with the traversed material
- Muon kinematic distributions extracted from selected single muons in data (backwards MC)
- To correct the spread induced by the backwardforward process (straggling, MS), an unfolding technique is applied to better reproduce the data distributions
- Relative uncertainty of MC expectation ~ 100%

Prompt background negligible w.r.t. combinatorial (UL at 90% CL is 30% of combinatorial)

Data-MC comparison: control samples

	$N_{ m exp} \pm \delta N_{ m exp}$	N _{obs}	$p(N \ge N_{\rm obs})$	$p(L \leq L_{\rm obs})$
Outside CR	62.5 ± 9.4	53	0.79	0.46
CR	0.46 ± 0.07	0	1.0	1.0
SR	0.040 ± 0.006	0	1.0	1.0

	$N_{ m exp} \pm \delta N_{ m exp}$	N _{obs}	$p(N \ge N_{\rm obs})$	$p(L \leq L_{\rm obs})$
Outside CR	9.1 ± 1.4	8	0.67	0.88
CR	0.050 ± 0.007	0	1.0	1.0
SR	0.005 ± 0.001	0	1.0	1.0

Data-MC comparison: signal sample, CRs opened

	_		
Drobobility	+0×0 000 70×0	ahaaw atian	in SR is 1.59%
Pronaniiiv		ONSPIVATION	
I IODUDIIILY			111 OI \ 13 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

	$N_{ m exp} \pm \delta N_{ m exp}$	Nobs	$p(N \ge N_{\rm obs})$	$p(L \leq L_{\rm obs})$
Outsid e CR	26.3 ± 3.4	28	0.47	0.74
CR1	0.29 ± 0.04	1	0.25	0.25
CR2	0.58 ± 0.07	1	0.44	0.44
CR3	1.70 ± 0.22	2	0.50	0.68
CR1+2 +3	2.57 ± 0.22	4	0.26	0.24
CR	0.17 ± 0.02	0	1.0	1.0
SR	0.016 ± 0.02	-	-	_

Data-MC comparison: signal sample, SR opened

1 event observed Counting experiment with 2.4σ significance

Signal shape not taken into account for the significance

Final result

The region enclosed by the contour is excluded

Conclusions and prospects

- The first preliminary result on search for production and decay of an exotic particle from data collected by the NA62 experiment in beam-dump mode has been presented;
- A cut-based counting experiment blind analysis to search for $A' \to \mu^+ \mu^-$ has been performed on the data collected in 2021;
- With $(1.4 \pm 0.28) \times 10^{17}$ POT, a 90% CL upper limit has been set, exploring a new region of the parameter space;
- Search for decays of exotic particles to e^+e^- , $\gamma\gamma$, $\pi^+\pi^-\gamma$ final states, using the data collected in 2021, are ongoing
- NA62 intends to take 10¹⁸ POT in beam-dump in 2022-2025 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs

Backup

Information of the observed event in SR

$$M_{\mu\mu} = 411 \text{ MeV}/c^2$$

$$\Delta T = -1.69 \text{ ns}$$

$$P(\mu^+) = 99.5 \text{ GeV}/c$$

$$P(\mu^{-}) = 39.5 \text{ GeV}/c$$

$$Z_{FV} = 157.8 \text{ m}$$

$$\bullet$$
 $CDA_{FV} = 382 \text{ mm}$

$$Z_{TAX} = 35.3 \text{ m}$$

$$\bullet$$
 $CDA_{TAX} = 17 \text{ mm}$

$$E/P(\mu^+) = 0.008$$

$$E/P(\mu^{-}) = 0.018$$

MC prompt background

Expected background summary for CR and SR

Region	Combinatorial	Prompt	Upstream-prompt
CR	0.17 ± 0.02	< 0.033	< 0.052
SR	0.016 ± 0.002	< 0.003	< 0.005

^{*}Limits defined at 90% CL