

LATEST RESULTS ON $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ DECAY AND PRECISION MEASUREMENTS WITH KAONS AT CERN

← NA48/2

 \rightarrow NA62

RENATO FIORENZA

renato.fiorenza@cern.ch

Scuola Superiore Meridionale

 $\begin{array}{l} \mathsf{K}^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu \\ \mathsf{K}^{+} \to \pi^{+} \nu \overline{\nu} \\ \mathsf{K}^{+} \to \pi^{0} \mathsf{e}^{+} \nu \gamma \\ \mathsf{K}^{+} \to \pi^{0} \mathsf{e}^{+} \mu^{-} \end{array}$

ICNFP 2022

05/09/2022

KAON EXPERIMENTS AT CERN

1984	NA3I (K _s / K _L)	
1990	First evidence of CPV	
1997	NA48, NA48/Ι (K _S / K _L) Discovery of CPV, Re(ε'/ε)	
2002	Rare K _s and hyperon decays	
2003 2004	NA48/2 (K ⁺ / K ⁻) Direct CPV, rare K [±] decays	
2007 2008	ΝΑ62 (Κ ⁺) R _K = Γ(Κ _{μν}) / Γ(Κ _{eν})	
2016	NA62 (K ⁺)	
now	Rare K ⁺ decays	

NA48/2 SETUP

2/22

Theory and status

K _{I4} mode	BR [10 ⁻⁵]	N _{cand}	
K_{e4}^{\pm}	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$ K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}^{00}$?	0	

- First observation
- Test of ChPT
- Test of lepton universality (experimental parametrization from K_{e4}⁰⁰)

- $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ as normalization channel
- $K^{\pm} \rightarrow \pi^0 \pi^0 (\pi^{\pm} \rightarrow \mu^{\pm} \nu)$ largest background
- $S_1 = M^2(\mu^{\pm}\nu) > 0.03 \text{ GeV}^2 / c^4$

2437 events selected in signal region
354 ± 33_{stat} ± 62_{syst} background events expected

THE NA62 EXPERIMENT

- High-precision kaon experiment
- Technique:
 - Fixed target
 - Decay-in-flight
- Broad physics program:
 - Measurement of BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) (main goal)
 - Precision measurements
 - Rare and forbidden decays (LFV, LNV) → R. Piandani, 06/09 15:50
 - Exotic searches (DP, DS, ALP, HNL) → S.A. Ghinescu, 10/09 11:20

Timeline:

2008: NA62 approval

- 2016 2018: First data taking run (2.2 × 10¹⁸ protons on target)
- 2021: Start of second data taking run with improved detector (ongoing)

this talk

5/22

ICNFP2022

JINST 12 (2017) P05025

05/09/2022

5/22

|INST 12 (2017) P05025

ICNFP2022

JINST 12 (2017) P05025

THE $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ DECAY: STATE OF THE ART

- FCNC s \rightarrow d, high CKM suppression
- Theoretically clean: short distance contribution
- Hadronic form factor measured with K_{l3}
- Largest theoretical uncertainty from CKM

 $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$

JHEP 11 (2015) 033

- Previous experimental measurement at E787/E949
- Decay-at-rest technique

$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{BNL} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Phys. Rev. D 79 (2009) 092004

$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{16}^{NA62} < 14 \times 10^{-10} @ 95\% CL$$

Phys. Lett. B 791 (2019) 156

NA62 2017 data: 2 events observed

 $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{16+17}^{NA62} = (4.8^{+7.2}_{-4.8}) \times 10^{-11}$

JHEP II (2020) 042

THE $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ DECAY: NEW PHYSICS SENSITIVITY

- Custodial Randall-Sundrum JHEP 0903 (2009) 108
- MSSM analyses JHEP 0608 (2006) 064

- Simplified Z, Z' models JHEP 11 (2015) 166
- Littlest Higgs with T-parity Eur.Phys.J. C76 (2016) 182
- LFU violation models Eur. Phys. J. C (2017) 77:618
- Leptoquarks arXiv:1802.00786v1 (2018)
- Constraints from existing measurements (correlations model dependent)

ANALYSIS STRATEGY

Keystones

년 탄 10¹ 년

10⁻²

10⁻³

10-4

10-5

10-6

 10^{-1}

- Blind analysis
- 7 categories depending on hardware and momentum
- MVA used for particle ID and upstream bkg rejection

Kinematic bkg suppression O(10⁴)

0

0.02

 $m_{miss}^2 = (P_K - P_\pi)^2$

0.04

K⁺→π⁺ν∇ (×10¹⁰)

 $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$

 $\begin{array}{ccc} 0.1 & 0.12 \\ m_{miss}^2 \ [GeV^2/c^4] \end{array}$

 $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

Muon rejection O(10⁷)

-0.02

• π^0 rejection O(10⁷)

 $K^+ \rightarrow e^+ \pi^0 v$.

Excellent time resolution O(100 ps)

0.06

0.08

SINGLE EVENT SENSITIVITY

$$N_{\pi\nu\nu}^{exp} = N_{\pi\pi} \varepsilon_{trig}^{PNN} \varepsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{BR(\pi\nu\nu)}{BR(\pi\pi)}$$
SES = $\frac{BR(\pi\nu)}{N_{\pi\nu}^{exp}}$

	Subset S1*	Subset S2 *
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N^{ m exp}_{\pi uar u}$	$1.56 \pm 0.10 \pm 0.19_{\rm ext}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$

* different hardware configurations

- $K^+ \rightarrow \pi^+ \pi^0$ normalization channel
- Cancellation of systematic effects
- Random Veto: efficiency loss due to beam activity

BACKGROUND FROM K⁺ DECAYS

UPSTREAM BACKGROUND

- Pions produced upstream of the fiducial volume
 - Early kaon decays
 - Interaction of beam particles with beam spectrometer material
- Fake association of detected pions to accidental particles
- Geometrical cuts & BDT cut on backtracked pion position
- Kaon-pion association effective
- Data-driven background estimation

EXPECTED BACKGROUND SUMMARY

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90 \\ -0.70}$
Total	$1.11\substack{+0.40\\-0.22}$	$4.31_{-0.72}^{+0.91}$

2018 DATA: BEFORE UNBLINDING

2018 DATA: AFTER UNBLINDING

2016+2017+2018 RESULT SUMMARY

- Single Event Sensitivity: (0.839 ± 0.053_{syst}) × 10⁻¹¹
- Expected SM signal events: |0.0| ± 0.42_{syst} ± 1.19_{ext}
- Expected background events: 7.03^{+1.05}_{-0.82}
- Observed events: 20
- 3.4σ significance

$$BR(K^+ \to \pi^+ \nu \overline{\nu})^{NA62}_{16+17+18} = (10.6 + 4.0 - 3.8)_{stat} \pm 0.9_{syst}) \times 10^{-11}$$

15/22

ICNFP2022

$K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\nu})$: STATE OF THE ART

Divergent decay amplitude for E_{γ} and $\theta_{e,\gamma} \rightarrow 0$ for the IB component

Eur. Phys. J. C 50 (2007) Phys. Atom. Nucl. 70 (2007) Eur. Phys. J. C 81.2 (2021)

Range	$E_{\gamma} { m cut}$	$ heta_{e,\gamma} { m cut}$	$O(p^6) ChPT [10^{-2}]$	$ISTRA + [10^{-2}]$	$OKA [10^{-2}]$
R_1	$E_{\gamma} > 10 \ MeV$	$\theta_{e,\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
R_2	$E_{\gamma} > 30 \; MeV$	$\theta_{e,\gamma} > 20^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
R_3	$E_{\gamma} > 10 \ MeV$	$0.6 < \cos \theta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

- | A_ξ(SM and beyond) | < 10⁻⁴
 A_ξ^{ISTRA+} (R₃) = (1.5 ± 2.1) × 10⁻²
- No measurements of A_{ξ} for R_1 and R_2

$K^+ \rightarrow \pi^0 e^+ v \gamma (K_{e3\gamma}):ANALYSIS$

$K^+ \rightarrow \pi^0 e^+ v \gamma (K_{e3\gamma})$: RESULTS (PRELIMINARY)

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62 preliminary
$R_1 \ (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2 \ (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

- Precision equal or better than 1% relative
- Relative precision improved by a factor >2
- Relative discrepancy with theory: 6-7%

	R1	R2	R3
A_{ξ}	$-0.001 \pm 0.003 \pm 0.002$	$-0.003 \pm 0.004 \pm 0.003$	$-0.009 \pm 0.005 \pm 0.004$

- R_3 asymmetry precision improved by a factor >3
- First measurement ever for R_1 and R_2

$K^+ \rightarrow \pi^+ \mu^+ \mu^-: THEORY$

- FCNC mediated by one photon exchange $K^+ \rightarrow \pi^+ \gamma^*$ Nucl. Phys. B291 (1987) 692–719, Phys. Part. Nucl. Lett. 5 (2008) 76–84
- Together with K⁺ → π⁺e⁺e⁻ allows for tests of Lepton Flavour Universality. A precise measurement of these decays could provide an evidence complementary to the B anomaly seen by LHCb.
 I. Phys. Conf. Ser. 800 (2017) 1,012014
- Form factor parametrized in NLO ChPT JHEP 08 (1998) 004 $W(z) = G_F M_K^2(a + bz) + W^{\pi\pi}(z)$ where $z = m(\mu^+\mu^-)^2 / M_K^2$

• Goal: measurement of *a*, *b*, model-dependent BR

$K^+ \rightarrow \pi^+ \mu^+ \mu^-: \text{ANALYSIS}$

- 2017+2018 data sample
- Normalization decay channel: $K^+ \rightarrow \pi^+ \pi^- \pi^-$
 - Abundant: BR ~ 5.6%
 - Kinematically similar
 - Reduced systematics
- Signal sample selected: 28011 events
 - MUV3 and LKr-based particle ID
 - 9x more than NA48/2 Phys. Lett. B 697 (2011) 107-115
 - Expected background: 12.5 ± 1.7_{stat} ± 12.5_{syst}
- Fit spectrum of MC, reweighted to minimize $\chi^2(a, b)$

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: RESULTS (PRELIMINARY)

E865, K_{πee}: Phys. Rev. Lett. 83 (1999) 4482-4485 NA48/2, K_{πee}: Phys. Lett. B 677 (2009) 246-254 NA48/2, K_{πuu}: Phys. Lett. B 697 (2011) 107-115

ICNFP2022

21/22

05/09/2022

CONCLUSION

- CERN North Area has a significant history of kaon studies
- First ever measurement of BR($K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$) by NA48/2 has been shown
- BR(K⁺→ $\pi^+\nu\bar{\nu}$) has been found by NA62 to be compatible with the SM within one standard deviation (most precise measurement so far)
- NA62 is now in the second run of data taking with improved detector layout, analysis improvements are on their way
- Measurement of BR($K^+ \rightarrow \pi^0 e^+ v \gamma$) has been brought to a relative precision of 1% or better
- First ever T-asymmetry measurement in regions R_1 and R_2 , precision improvement of a factor 3 in region R_3
- Large clean sample of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- Measured $K_{\pi\mu\mu}$ form factor parameters, no LFU violation found
- Papers in preparation, stay tuned!

NA48/2 DETECTOR

KABES

- σ(X,Y) ~ 800 μm
- $\sigma(p_K) / p_K \sim 1\%$
- σ(T) ~ 600 ps
- Magnetic spectrometer (DCHI-DCH4)
 - $\sigma(X,Y) \sim 90 \ \mu m \ per \ chamber$
 - $\sigma(p_{DCH}) / p_{DCH} = (1.02 \oplus 0.044 \text{ GeV}^{-1} \times p_{DCH})\%$
- Scintillator HODoscope
 - σ(T) ~ I 50 ps
- Liquid Krypton EM calorimeter (LKr)
 - $\sigma_x = \sigma_y = (0.42 \text{ GeV}^{\frac{1}{2}} / \sqrt{E_{\gamma} \oplus 0.06}) \text{ cm}$
 - $\sigma(E_{\gamma}) / E_{\gamma} = (3.2 \text{ GeV}^{\frac{1}{2}} / \sqrt{E_{\gamma} \oplus 9.0 \text{ GeV}} / E_{\gamma} \oplus 0.42)\%$

NA62 DETECTOR

NA62 DETECTOR

NA62 DETECTOR

 $K^+ \rightarrow \pi^+ X$

- Peak search using m_{miss}^2 for m_X in the 0 260 MeV/c² range
- Backgrounds: same as $K^+ \rightarrow \pi^+ \nu \overline{\nu}$, plus SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ itself
- 90% UL on BR(K⁺ $\rightarrow \pi^+ X$) in 10⁻¹¹ 10⁻¹⁰
- Dark Scalar interpretation: mixing with Higgs

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ BETWEEN 2021 AND LS3

ICNFP2022