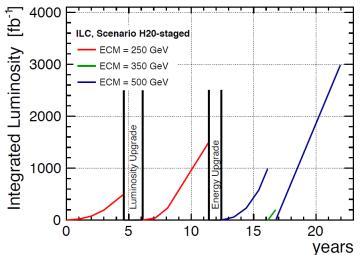
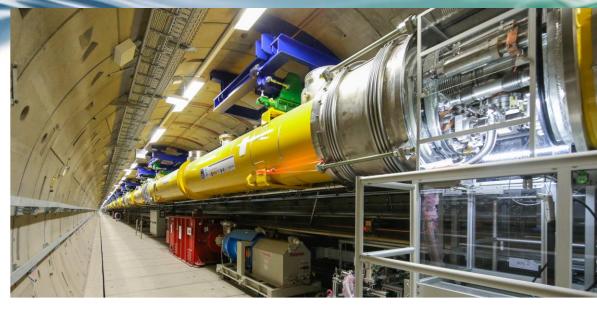
### Higgs physics at ILC


I.Božović Jelisavčić VINCA Institute of Nuclear Sciences, Uni. Belgrade

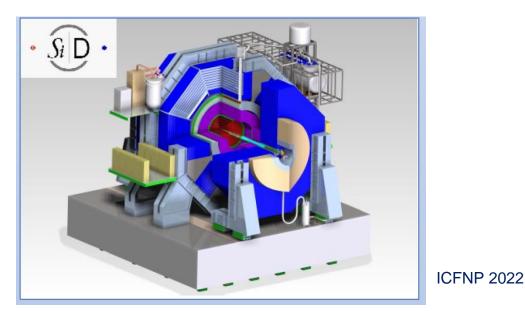

ICNFP 2022 Crete, Greece

ilc

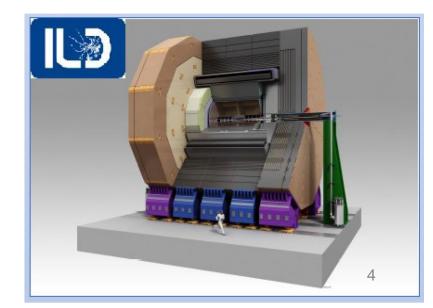
- ILC as a Higgs factory
- Higgs physics at ILC
  - Higgs couplings
  - Higgs self-coupling
  - CPV in the Higgs sector
  - Exotic and rare decays
- Outlook

# A word on ILC









- Comes as a <u>'ready to take' project (mature design, proven technologies)</u>
- <u>Largest ever accelerator prototype (operating now as E-XFEL)</u>, full industrialization of ILC-type SCRF cavity production
- <u>Tunable, upgradeable (detector optimized from Z-pole to 1 TeV run)</u>
- Comes with a <u>rich program of auxiliary experiments ILCX (fixed-target, beam dump</u> experiments to address dark sector and FIPs)

# A word on detector

- Two validated detector concepts: ILD and SiD
- Physics driven requirements
- Decades of extensive detector R&D
   ⇒ mature design (& available technologies)
- Multiple R&D collaborations involved (CALICE, FCAL, LCTPC,..)





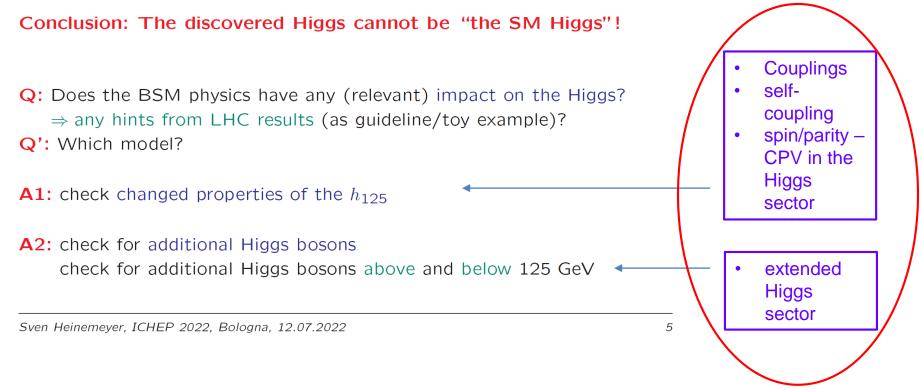


Fact I & II:

We have discoved an SM-like Higgs!

The SM cannot be the ultimate theory!

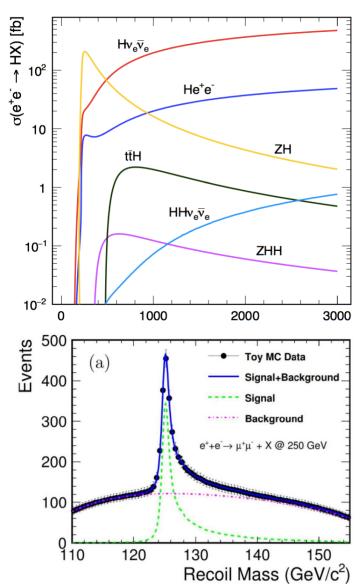
Conclusion: The discovered Higgs cannot be "the SM Higgs"!


Q: Does the BSM physics have any (relevant) impact on the Higgs?<br/> $\Rightarrow$  any hints from LHC results (as guideline/toy example)?<br/>Q': Which model?Couplings<br/>self-coupling<br/>spin/parityA1: check changed properties of the  $h_{125}$ Couplings<br/>self-coupling<br/>spin/parityA2: check for additional Higgs bosons<br/>check for additional Higgs bosons above and below 125 GeVSven Heinemeyer, ICHEP 2022, Bologna, 12.07.20225

Fact I & II:

We have discoved an SM-like Higgs!

The SM cannot be the ultimate theory!

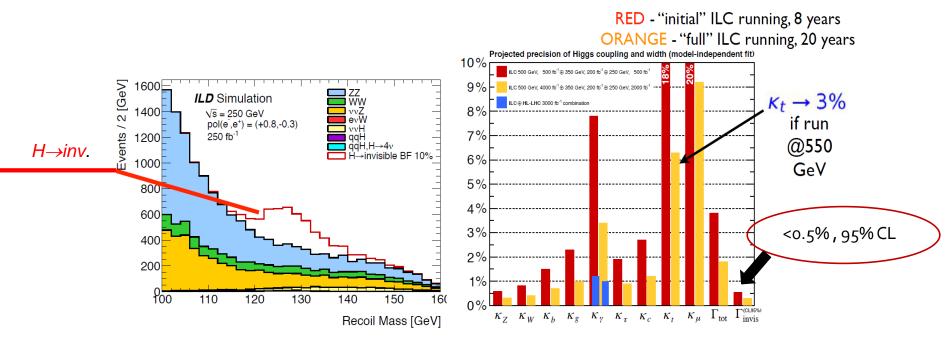

#### PROGRAM OF THE HIGGS FCTORIES



# Higgs production at ILC

#### - Plethora of Higgs production processes

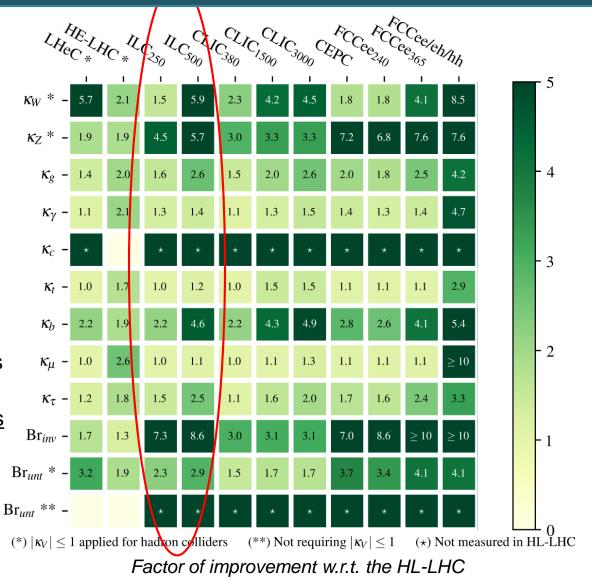
- As staged machine benefits from additional statistics from WW-fusion
- Double Higgs production at higher energies enables precise self-coupling determination
- Higgsstrahlung (ZH) facilitates recoil mass technique
- Absolute  $\Gamma_{H}$  measurement
- Access to invisible Higgs decays
- Most of the Higgs couplings can be determined with a better precision than at HL-LHC only from ZH
- 20 years running (250 GeV + 500 GeV) + beam polarization:
  - $\Delta m_H = 14 \text{ MeV}$  (impact on  $H \rightarrow ZZ^*$  width a few tens of MeV required),
  - $\Delta \sigma_{ZH} / \sigma_{ZH} = 0.7\%$ ,
  - $\delta(g_{HZZ})=0.4\%$




#### I. Bozovic

# Higgs to invisible

- Looking at the recoil mass in HZ under the condition that nothing observable is recoiling against the *Z* boson
- Access to DM connected to SM particles through a specific set of operators (portals)

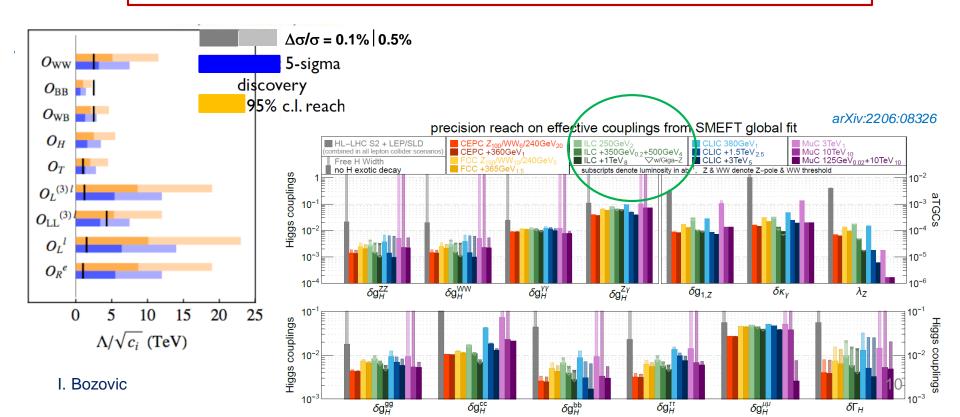

$$\frac{1}{2}\epsilon_Y F^Y_{\mu\nu} F'^{\mu\nu} \qquad \epsilon_H |H|^2 |\Phi|^2 \qquad \epsilon_a \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$



# Higgs couplings - $\kappa$ framework

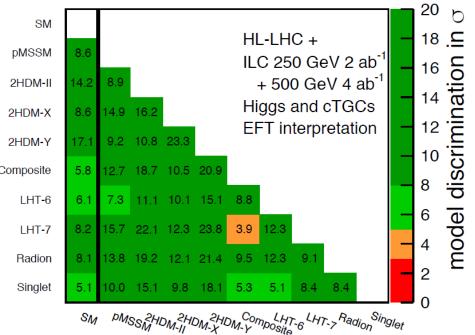
**Higgs couplings – global fit** (from model - independent measurements in ZH, κ-framework to EFT)

- Clear improvement w.r.t. HL-LHC precision
- Should not over interpret differences between the projects
- See what does it mean for BSM model interpretation in the Higgs sector




Higgs @Future Colliders WG EPPSU

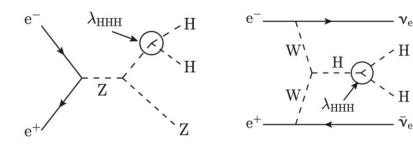
**ICFNP 2022** 

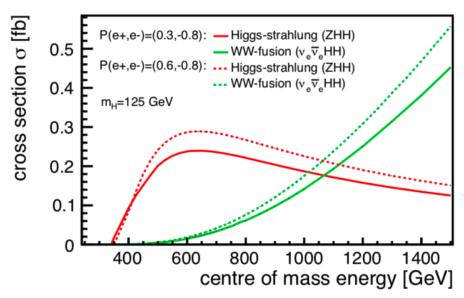

## Higgs couplings - EFT

- Most couplings (except Hµµ and Htt)<1%</li>
- EFT: Smaller the uncertainty larger the NP scale to be probed (~1/Λ<sup>2</sup>) independently of a particular model
- Polarization improves a bit the run-time
- ... helping primarily to constrain the most general set of triple gauge coupling deviations allowed by Lorentz invariance - only if both beams are polarized



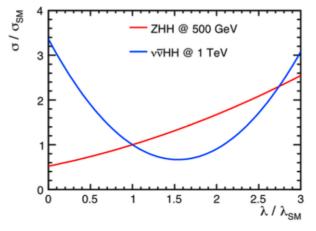
### Higgs as a probe to BSM


|   | Model                         | $b\overline{b}$ | $c\overline{c}$ | <u>gg</u> | WW                  | au	au | ZZ                 | $\gamma\gamma$ | $\mu\mu$ |
|---|-------------------------------|-----------------|-----------------|-----------|---------------------|-------|--------------------|----------------|----------|
| 1 | MSSM [36]                     | +4.8            | -0.8            | - 0.8     | -0.2                | +0.4  | -0.5               | +0.1           | +0.3     |
| 2 | Type II 2HD [35]              | +10.1           | -0.2            | -0.2      | 0.0                 | +9.8  | 0.0                | +0.1           | +9.8     |
| 3 | Type X 2HD [35]               | -0.2            | -0.2            | -0.2      | 0.0                 | +7.8  | 0.0                | 0.0            | +7.8     |
| 4 | Type Y 2HD [35]               | +10.1           | -0.2            | -0.2      | 0.0                 | -0.2  | 0.0                | 0.1            | -0.2     |
| 5 | Composite Higgs [37]          | -6.4            | -6.4            | -6.4      | -2.1                | -6.4  | -2.1               | -2.1           | -6.4     |
| 6 | Little Higgs w. T-parity [38] | 0.0             | 0.0             | -6.1      | -2.5                | 0.0   | -2.5               | -1.5           | 0.0      |
| 7 | Little Higgs w. T-parity [39] | -7.8            | -4.6            | -3.5      | - <mark>1</mark> .5 | -7.8  | -1.5               | -1.0           | -7.8     |
| 8 | Higgs-Radion [40]             | -1.5            | - 1.5           | +10.      | -1.5                | -1.5  | - <mark>1.5</mark> | -1.0           | -1.5     |
| 9 | Higgs Singlet [41]            | -3.5            | -3.5            | -3.5      | -3.5                | -3.5  | -3.5               | -3.5           | -3.5     |




- Boosted sensitivity in combination with HL-LHC, evident synergy
- Higher energies (500 GeV) pin down above the discovery limit, BSM models of the Higgs sector difficult to be probed at HL-LHC

<sup>2</sup> 2022

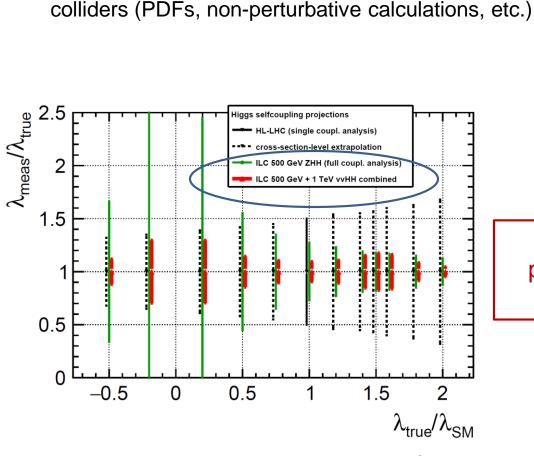

# Higgs self-coupling $\,\lambda$





#### Higgs self-coupling parameter $\lambda$

- Two complementary processes available
- WW-fusion (HHvv) statistically preferred at high energies
- Polarization significantly influences the HHvv rate
- Different behavior of ZHH and HHvv x-section resolves ambiguity for non-SM values of  $\lambda$
- HHvv is the most sensitive to deviations of the Higgs self-coupling




High energy (≥ 500 GeV) e<sup>+</sup>e<sup>-</sup> collider is superior in determination of the Higgs self-coupling

#### I. Bozovic

# Higgs self-coupling $\lambda$

Higgs self-coupling parameter  $\lambda$ 



Clear advantage of high-energy e+e- colliders

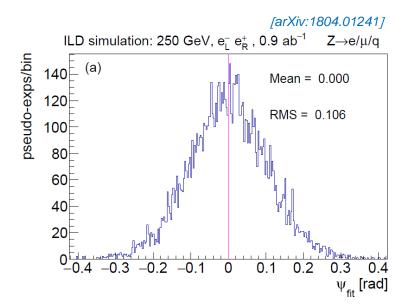
Unlimited by theoretical uncertainties unlike hh

```
68% CL for \lambda = \lambda_{SM}
```

| collider   | excl. from HH |
|------------|---------------|
| HL-LHC     | 50%           |
| ILC 500    | 27%           |
| ILC 1000   | 10%           |
| CLIC 1500  | 36 %          |
| CLIC 3000  | [-7%, 11%]    |
| FCCee (4IP | ?) 27%        |
| FCChh      | < 8%          |

High energy e+e- collider is particularly sensitive to non-SM values of  $\lambda$ 

### CPV in the Higgs sector

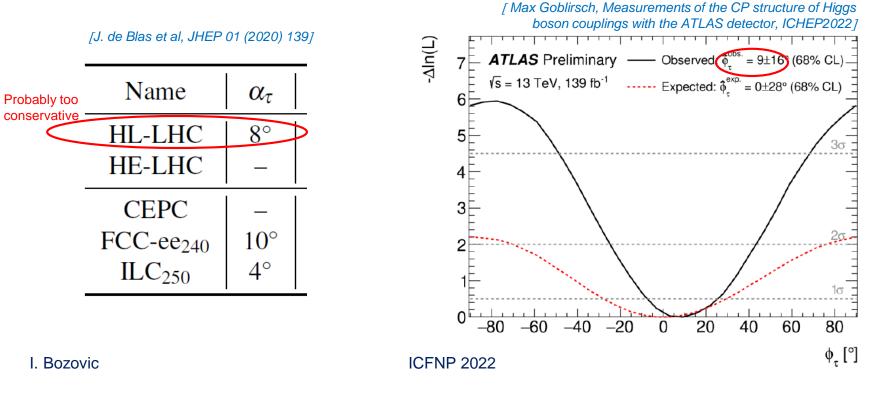

#### **CP** violation in the Higgs sector

- Higgs can be a CPV mixture of scalar and pseudoscalar states  $h = H \cdot cos\Psi_{CP} + A \cdot sin\Psi_{CP}$ mixing angle to be determined
- Several vertices to be probed (Hττ, HZZ, HWW) in Higgs production and decays
- The most precise result in H→ττ decays comes from ILC

| fermion couplings                         | 3         |
|-------------------------------------------|-----------|
| $H \to \tau^- \tau^+$                     | 250+ GeV  |
| $e^-e^+ \to H t \overline{t}$             | 500+ GeV  |
| boson couplings                           |           |
| $e^-e^+ \to HZ$                           | 250+ GeV  |
| $H \rightarrow ZZ$                        | 250+ GeV  |
| $H \to WW$                                | 250+ GeV  |
| $e^-e^+ \to He^-e^+ \ (ZZ\text{-fusion})$ | 1000+ GeV |

#### [J. de Blas et al, JHEP 01 (2020) 139]

| Name                  | $\alpha_{\tau}$ |
|-----------------------|-----------------|
| HL-LHC                | 8°              |
| HE-LHC                | -               |
| CEPC                  | _               |
| FCC-ee <sub>240</sub> | 10°             |
| ILC <sub>250</sub>    | 4°              |




### CPV in the Higgs sector

#### **CP** violation in the Higgs sector

- Higgs can be a CPV mixture of scalar and pseudoscalar states – mixing angle to be determined
- Several vertices to be probed (Hττ, HZZ, HWW) in Higgs production and decays
- The most precise result in H→ττ decays comes from ILC

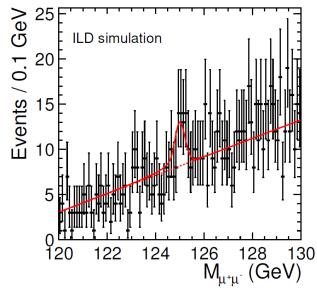
| fermion couplings                         | 5         |
|-------------------------------------------|-----------|
| $H \to \tau^- \tau^+$                     | 250+ GeV  |
| $e^-e^+ \to H t \bar{t}$                  | 500+ GeV  |
| boson couplings                           |           |
| $e^-e^+ \to HZ$                           | 250+ GeV  |
| $H \rightarrow ZZ$                        | 250+ GeV  |
| $H \to WW$                                | 250+ GeV  |
| $e^-e^+ \to He^-e^+ \ (ZZ\text{-fusion})$ | 1000+ GeV |



#### CP violation in the Higgs sector – understanding the precision

- CPV mixing angle measurement in  $H \rightarrow \tau \tau$  is a nice illustration of ILC advantages:
  - Clean environment
  - Different beam polarizations
  - Reduction of statistical uncertainty in combination
- Background free assumption with 100% signal reconstruction will give  $\Delta \psi_{CP} < 1.5^{\circ}$

| $\mathcal{L}(ab^{-1})$ | H20-stage  | ed: 250 GeV, 2 $ab^{-1}$ | $\Delta \psi_{CP} (mrad)$ |
|------------------------|------------|--------------------------|---------------------------|
| 0.9                    | -0.8 + 0.3 | only $e_L^- e_R^+$       | 102                       |
| 0.9                    | +0.8 -0.3  | only $e_R^- e_L^+$       | 120                       |
| 0.1                    | -0.8 -0.3  | only $e_L^- e_L^+$       | 359                       |
| 0.1                    | +0.8 +0.3  | only $e_R^- e_R^+$       | 396                       |
| 2.0                    | mixed      | full analysis            | 75                        |


[arXiv:1804.01241]

**ICFNP 2022** 

### Higgs rare decays

#### Power of combination: polarization, energy staging

The same mechanisms in place for rare decays H  $\rightarrow \mu\mu$  (BR = 0.021%)



S. Kawada, Prospects of measuring Higgs boson decays into muon pairs at the ILC, arXiv:1902.05021

| $\sqrt{s} = 250 \text{ GeV}$ | $q\overline{q}H$ | $v\overline{v}H$ | ILC250 | ILC250+500 |
|------------------------------|------------------|------------------|--------|------------|
| L                            | 34%              | 113%             | 23%    |            |
| R                            | 36%              | 111%             | 23%    |            |
| $\sqrt{s} = 500 \text{ GeV}$ | $q\overline{q}H$ | $v\overline{v}H$ | ILC500 | 17%        |
| L                            | 43%              | 37%              | 24%    | *          |
| R                            | 48%              | 106%             | 24%    |            |

**ICFNP 2022** 

### Higgs exotic decays

#### **Flavorful Higgs**

1.0

0.8

0.6

0.2

0.0

0.0

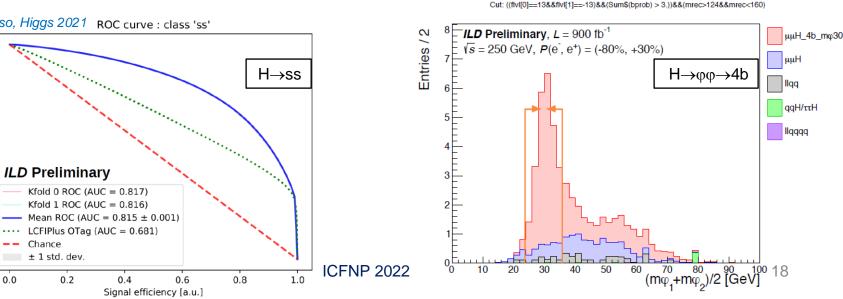
1. E

Background rejection [a.u.]

- 2HDMs with a non-standard Yukawa sector One Higgs doublet responsible for the masses of the weak gauge bosons and the 3<sup>rd</sup> generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations
- Including flavor violating decays  $H \rightarrow cs$  or cb

#### Room for improvement of existing algorithms

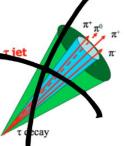
#### **Higgs exotic decays**


 $H \rightarrow \phi \phi (\rightarrow 4b)$ 

- Full simulation analysis at 250 GeV ILD
- Scalar mediator mass range: 15 60 GeV

95% CL upper limit on BR( $H \rightarrow \phi \phi \rightarrow 4b$ ) < 0.1%

| <b>mφ</b> U | L on BR(H $\rightarrow$ 4b) |
|-------------|-----------------------------|
| 15 GeV      | 0.07%                       |
| 30 GeV      | 0.09%                       |
| 45 GeV      | 0.10%                       |
| 60 GeV      | 0.09%                       |


#### Yu Kato, Higgs 2021



T. Basso, Higgs 2021 ROC curve : class 'ss'

# Outlook – can we do better?

- Some measurements (like  $\lambda$ ) are clearly preferred at high energy lepton collider
- Benefits from different polarizations and combinations are evident
- Room for improvement, beneficial also to other precision measurements



#### Jet Clustering

 $\begin{array}{l} \mbox{Perfect jet clustering} \\ \rightarrow \sim 40\% \mbox{ relative} \\ \mbox{improvement in } \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} \\ \mbox{Flavour Tagging} \end{array}$ 

Better *b*-tagging efficiency

5% relative improvement in  $\varepsilon_{b-\text{tag}}$  $\rightarrow 11\%$  relative improvement in  $\Delta \sigma_{\text{ZHH}} / \sigma_{\text{ZHH}}$ Isolated lepton tagging

•••• Optimised for 
$$\ell = \{e, \mu\}$$

For  $\varepsilon_{\tau} \sim \varepsilon_{e,\mu}$ 

 $\rightarrow$  8% relative improvement in  $\Delta\sigma_{\rm ZHH}/\sigma_{\rm ZHH}$ 

### DESY-THESIS-2016-027 & Julie Munch Torndal, SWANA Meeting, May 2022 I. Bozovic ICFNP 2022

#### Tau Reconstruction

- Improved reconstruction
- Better tau decay mode identification
- Use of additional tau decay modes
- CPV in  $H \rightarrow \tau \tau$  decays ~ 2°

#### **Jet Reconstruction and Pairing**

- Important for λ precision (among others)
- Observables: σ<sub>ZHH</sub>, σ<sub>HHvv</sub>, m(HH)
- Processes:  $HH \rightarrow bb\overline{b}b$  and  $HH \rightarrow bbWW$
- Possibility to reach  $\Delta\lambda/\lambda < 10\%$

# ILC as a Higgs factory

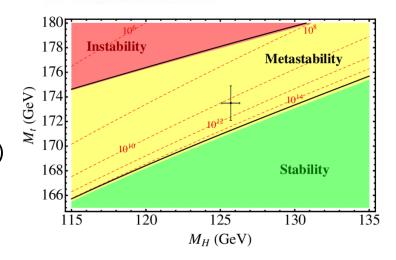
- $\sim 10^6$  Higgs bosons
- Known initial state
- No PDFs, dominant statistical uncertainty
- Higgsstrahlung offers model-independence
- Absolute normalization of the Higgs couplings
- ( $\Gamma_{\rm H}$  measurement in a model independent way)

Clean experimental environment:

- No pile-up
- (practically) QCD free
- Trigger-less readout

PRECISION MEASUREMENTS




- Added values of:
  - polarization/ model discrimination, better precision with smaller statistics
  - high-energy reach linear machine (improved BSM sensitivity,  $\lambda$  determination)

- ILC is viable, mature and imminently available option for a future Higgs factory
- It offers: clean environment, flexible polarization and upgradeable energy
- Combination of the above enables utmost precision in Higgs sector measurements
- Higgs couplings improvement O (10) w.r.t. HL-LHC (in particular for H to EW bosons )
- NP scale O(10 TeV) to be probed indirectly (EFT)
- Higgs BSM model discrimination  $\ge 5\sigma$
- $\lambda$  precision < 10% (ILC 1000)
- Ongoing effort on improvement of reconstruction/identification algorithms will be leading to further precision enhancements



### Higgs mass

- Which precision of the Higgs mass is needed?
  - Vacuum stability (at least several GeV)
  - Impact on  $H \rightarrow ZZ^*$  width (a few tens of MeV)



ATLAS+CMS Run1 $125.09 \pm 0.24$  $(\pm 0.21 \text{ stat} \pm 0.11 \text{ syst})$  GeVCMS Run1 + 2016 $125.38 \pm 0.14$  $(\pm 0.11 \text{ stat} \pm 0.08 \text{ syst})$  GeVATLAS Run1 + 4l Run2 $124.94 \pm 0.17$  $(\pm 0.17 \text{ stat} \pm 0.03 \text{ syst})$  GeV

[C. Mariotti, Higgs results: From the discovery to precision physics, ICHEP2022]

| Collider Scenario    | Strategy                 | $\delta m_H$ (MeV) | $\delta(\Gamma_{ZZ^*})$ (%) |
|----------------------|--------------------------|--------------------|-----------------------------|
| LHC Run-2            | $m(ZZ), m(\gamma\gamma)$ | 160                | 1.9                         |
| HL-LHC               | m(ZZ)                    | 10-20              | 0.12-0.24                   |
| ILC <sub>250</sub>   | ZH recoil                | 14                 | 0.17                        |
| CLIC <sub>380</sub>  | ZH recoil                | 78                 | 1.3                         |
| CLIC <sub>1500</sub> | m(bb) in $Hvv$           | 30 <sup>15</sup>   | 0.56                        |
| CLIC <sub>3000</sub> | m(bb) in $Hvv$           | 23                 | 0.53                        |
| FCC-ee               | <i>ZH</i> recoil         | 11                 | 0.13                        |
| CEPC                 | <i>ZH</i> recoil         | 5.9                | 0.07                        |

I. Bozovic

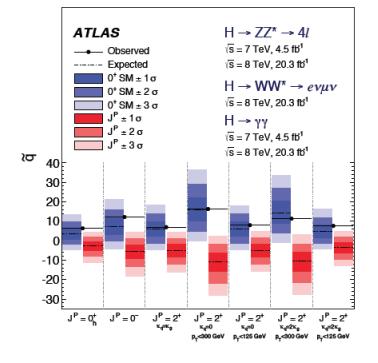
[M. Cepeda, Higgs precision measurements at future colliders, IFT UAM-CSIC, Madrid, 2019]

### Higgs width

- Being less than 5 MeV, Higgs decay width can not be *directly* measured at any proposed e+e-collider
- Can be determined from individual decays like H $\rightarrow$ ZZ in HZ (or H $\rightarrow$ WW decays in WW-fusion)  $\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$
- In a combination of measurements:

$$\frac{\sigma(\text{ee}\rightarrow\text{ZH})\cdot\text{BR}(\text{H}\rightarrow\text{WW})\cdot\sigma(\text{ee}\rightarrow\text{ZH})\cdot\text{BR}(\text{H}\rightarrow\text{bb})}{\sigma(\text{ee}\rightarrow\nu\nu\mu\text{H})\cdot\text{BR}(\text{H}\rightarrow\text{bb})}$$

$$\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{I} \cdot \frac{I}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$$


- The ultimate precision is reached in a global fit i.e. κ-framework (model-independent, EFT):

$$\Gamma_H = \frac{\Gamma_H^{\rm SM} \cdot \kappa_H^2}{1 - (BR_{inv} + BR_{unt})}$$

| Collider                                       | Extraction technique standalone resu | It $\delta \Gamma_H [\%]$<br>kappa-3 fit |
|------------------------------------------------|--------------------------------------|------------------------------------------|
| ILC <sub>250</sub>                             | EFT fit [3,4]                        | 2.2                                      |
| ILC <sub>500</sub>                             | EFT fit [3,4,14]                     | ( 1.1 )                                  |
| ILC <sub>1000</sub>                            | EFT fit [4]                          | 1.0                                      |
| CLIC <sub>380</sub>                            | $\kappa$ -framework [98]             | 2.5                                      |
| CLIC <sub>1500</sub>                           | $\kappa$ -framework [98]             | 1.7                                      |
| CLIC <sub>3000</sub>                           | κ-framework [98]                     | 1.6                                      |
| CEPC                                           | <i>κ</i> -framework [103, 104]       | 1.7                                      |
| FCC-ee <sub>240</sub>                          | $\kappa$ -framework [1]              | 1.8                                      |
| FCC-ee <sub>240</sub><br>FCC-ee <sub>365</sub> | $\kappa$ -framework [1]              | 1.1                                      |

I. Bozovic

# ATLAS and CMSSpin Omany analyses, →Positive paritylots of resultsat > 99.9% CL



**CP structure** of various Higgs couplings probed for fermions (top,  $\tau$ ), gluons, EW vector bosons, with a variety of production and decay modes

- Measurement globally in accord with SM CPeven hypothesis
- Pure CP-odd ttH coupling excluded 3.9 σ
- Pure CP-odd Htt coupling excluded 3.4  $\sigma$

[C. Mariotti, Higgs results: From the discovery to precision physics, ICHEP2022]