Highlights of Recent BESIII Results

Vindhyawasini Prasad

(On behalf of the BESIII Collaboration)

Email: vindy@ustc.edu.cn

Instituto de Alta Investigacion Universidad de Tarapaca Casilla 7D, Arica, Chile

UNIVERSIDAD DE TARAPACÁ Universidad del Estado

XI International Conference on New Frontiers in Physics

Outline

- Status of BEPC-II and BESIII
- R-Value measurement PRL 128, 062004 (2022)
- Results from radiative J/ψ decays
 - New discovery of X(2600) in $J/\psi \to \gamma \pi^+ \pi^- \eta'$ PRL 129, 042001 (2022)
 - EM Dalitz decay $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$
 - Light Higgs boson A⁰ search

- PRL 129, 022002 (2022)
- **PRD 105, 012008 (2022)**
- Observation of $D^0 \rightarrow \omega \phi$ PRL 128, 011803 (2022)
- Summary and outlook

Beijing Electron Positron Collider II

https://english.ihep.ac.cn/

BESIII Experiment

Multilayer drift chamber (MDC)

- $He/C_3H_8(60/40)$
- 43 layers
- Momentum resolution $\sigma_p/p \approx 0.5\%$ @ 1 GeV
- Spatial resolution $\sigma_{xy} \approx 130 \ \mu m$.

Electromagnetic calorimeter (EMC) (CsI(Tl))

- \rightarrow 6240 crystals overall
- $\sigma(E)/E \approx 2.5\%$
- $\sigma_{Z,\phi}(E) \approx 0.5 0.7 \text{ cm}$

**Will replace the inner part of the drift chamber by the three layers of CGEM detector during Jan-Jun., 2024

BESIII Data-set

ICNFP 2022 Conference

R-Value Measurement

PRL 128, 062004 (2022)

http://bes3.ihep.ac.cn/hi/202203/t20220301_301719.html

R-Value Measurement

R-Value is the ratio of leading-order production cross sections of hadrons and muon-pairs in e⁺e⁻ collisions

$$R \equiv \frac{\sigma^0(e^+e^- \to \text{hadrons})}{\sigma^0(e^+e^- \to \mu^+\mu^-)} \equiv \frac{\sigma^0_{\text{had}}}{\sigma^0_{\mu\mu}}$$

With
$$\sigma^0_{\mu\mu}$$
 directly from QED: $\sigma^0_{\mu\mu} = \frac{4\pi\alpha}{3s} \frac{\beta_\mu (3-\beta\mu^2)}{2}$, with $\beta_\mu = \sqrt{1-\frac{4m_\mu^2}{s}}$

Important input to current tests of Standard Model

Running of the Fine Structure Constant $\Delta lpha_{ m em}$

Anomalous Magnetic Moment of the Muon

RL 128, 062004 (2022)

ICNFP 2022 Conference

R-Value determination PRL 128, 062004 (2022)

Analysis Stategy

- → Used 14 center-of-mass energy points: $\sqrt{s} = [2.2324, 3.6710]$ GeV
 - > Experimentally, the R value is determined by

[arXiv:hep-ph/9910285]

R-Value determination PRL 128, 062004 (2022)

→ Used 14 center-of-mass energy points: $\sqrt{s} = [2.2324, 3.6710]$ GeV

\sqrt{s} (GeV)	N ^{obs} _{bad}	N _{bkg}	$\sigma^0_{\mu\mu}$ (nb)	\mathcal{L}_{int} (pb ⁻¹)	$\varepsilon_{\rm had}~(\%)$	$1 + \delta$	R
2.2324	83 227	2041	17.427	2.645	64.45	1.195	$2.286 \pm 0.008 \pm 0.037$
2.4000	96 627	2331	15.079	3.415	67.29	1.204	$2.260 \pm 0.008 \pm 0.042$
2.8000	83 802	2075	11.078	3.753	72.25	1.219	$2.233 \pm 0.008 \pm 0.055$
3.0500	283 822	7719	9.337	14.89	73.91	1.193	$2.252 \pm 0.004 \pm 0.052$
3.0600	282 467	7683	9.276	15.04	73.88	1.183	$2.255 \pm 0.004 \pm 0.054$
3.0800	552 435	15 433	9.156	31.02	73.98	1.123	$2.277 \pm 0.003 \pm 0.046$
3.4000	32 202	843	7.513	1.733	74.81	1.382	$2.330 \pm 0.014 \pm 0.058$
3.5000	62 670	1691	7.090	3.633	75.32	1.351	$2.327 \pm 0.010 \pm 0.062$
3.5424	145 303	3872	6.921	8.693	75.58	1.341	$2.319 \pm 0.006 \pm 0.060$
3.5538	92 996	2469	6.877	5.562	75.50	1.338	$2.342 \pm 0.008 \pm 0.064$
3.5611	64 650	2477	6.849	3.847	75.50	1.337	$2.338 \pm 0.010 \pm 0.066$
3.6002	159 644	9817	6.701	9.502	75.73	1.328	$2.339 \pm 0.006 \pm 0.065$
3.6500	78 730	6168	6.519	4.760	76.00	1.308	$2.352 \pm 0.009 \pm 0.067$
3.6710	75 253	6461	6.445	4.628	76.11	1.260	$2.405 \pm 0.010 \pm 0.067$

Accuracy ~2.6% (a) $\sqrt{s} < 3.1$ GeV and ~3.0% (a) $\sqrt{s} > 3.1$ GeV

R-Value consistent with KEDR result [Phys. Lett. B 788, 42 (2019)] and QCD prediction [Phys. Lett. B 714, 62 (2012)]

> Used 14 center-of-mass energy points: $\sqrt{s} = [2.2324,3.6710]$ GeV

Radiative J/ ψ decays

- New discovery of X(2600) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ PRL 129, 042001 (2022) http://bes3.ihep.ac.cn/hi/202207/t20220720_308453.html
- EM Dalitz decay $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

PRL 129, 022002 (2022)

Light Higgs boson A⁰ search

PRD 105, 012008 (2022)

Hadron spectrum

... but QCD allows also different combinations of quarks and gluons: EXOTIC hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

Radiative J/ ψ decays

• Charmonium radiative decays provide ideal laboratory for light glueballs and hybrids studies

- \checkmark Gluon-rich process
- \checkmark Clean process
- ✓ High statistics

• Glueballs can mix with ordinary $q\bar{q}$ states Predicted large branching fractions for glueballs in J/ ψ radiative decays

 $\frac{\Pr{L110,}}{021601} \frac{\Gamma(J/\psi \to \gamma G_{0^{++}})/\Gamma_{tot} = 3.8(9) \times 10^{-3}}{\Gamma(J/\psi \to \gamma G_{2^{++}})/\Gamma_{tot} = 1.1(2)(1) \times 10^{-2}}$

Radiative J/ψ decays can also be utilized to search for a CP-odd light Higgs boson (A⁰)

```
Phys. Rev. Lett. 39, 1304 (1977)
```


Phys. Rev. D73 (2006) 014516

Past observations of X(1835), X(2120), X(2370) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

The $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ has already lead to discovery of three states

Past observations of X(1835), X(2120), X(2370) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ PRL 129, 042001 (2022)

The $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ has already lead to discovery of three states

New discovery of X(2600) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- Confirmation of X(1835),
 X(2120) and X(2370)
- New structure X(2600)
- > Correlation with $M_{\pi^+\pi^-} \approx 1.5 \text{ GeV}$

New discovery of X(2600) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ PRL 129, 042001 (2022)

- Confirmation of X(1835), X(2120) and X(2370)
- New structure X(2600)
- ▶ Correlation with $M_{\pi^+\pi^-} \approx 1.5$ GeV
- ► Complicated pattern in $M_{\pi^+\pi^-}$ interference between f₀(1500) and X(1540)

Resonance	Mass (MeV/ c^2)	Width (MeV)	
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107 \pm 9^{+21}_{-7}$	
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$	
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195\pm5^{+26}_{-17}$	

More studies (including J^{PC} determination) is necessary to fully understand the nature of X(2600).

Same structures in EM Dalitz decay $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$ (29, 022002 (2022))

additional input to model calculations regarding nature of these states

Light Higgs boson A⁰ search in radiative J/ ψ decay PRD 105, 012008 (2022)

No evidence of A⁰ production is found and set 90% confidence level upper limits on product BFs.

Use 9 billion J/ψ events collected by BESIII experiment to perform this study.

$$\frac{\mathcal{B}(V \to \gamma A^0)}{\mathcal{B}(V \to l^+ l^-)} = \frac{G_F m_q^2 g_q^2 C_{\text{QCD}}}{\sqrt{2}\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_V^2}\right)$$

In Next-to-Minimal Supersymmetric Model (NMSSM), $g_c = cos\theta_A/tan\beta$ for Charm quark and $g_b = cos\theta_A tan\beta$ for bottom quark.

Observation of $D^0 \rightarrow \omega \phi$ with 2.93 fb⁻¹ of BESIII $\psi(3773) \rightarrow D\overline{D} \ (D = D^0, D^+)$ data

Observation of $D^0 \rightarrow \omega \phi$

M_{BC} signal

(GeV/c²)

Data

And sideband

1.04

1.02

(GeV/c²

Entries/(0.6 MeV/c²

, sideband

M_{n*ein0} (GeV/c

M_{ne} signal

- Single-tag method with $\phi \to K^+K^-$ and $\omega \rightarrow \pi^+ \pi^- \pi^0$
- Signal: $1.859 < MBC < 1.871 \text{ GeV/c}^2$
- Sideband: (1.84,1.855) U (1.873, 1.890) GeV/c^2
- First Observation:

$$\mathcal{B} = rac{N_{
m sig}^{
m ST}}{2.N_{D^0\bar{D}^0}.\epsilon.\mathcal{B}_{sub}} = (6.48 \pm 0.96 \pm 0.40) imes 10^{-4}$$

with 6.3σ significance

0.65

0.7

0.75

M____ (GeV/c2)

intries/(2 MeV/c

Polarization in $D^0 \rightarrow \omega \phi$

RL 128, 011803 (2022

[JHEP 03, 042 (2014)]

Summary and outlook

- > BESIII is an experiment of tau-charm factory.
- This talk mainly covers the results of light QCD, light hadron spectroscopy, New physics and charm physics.
 - Improved the precision of R measurement
 - \circ First observation of X(2600)
 - Set stringent upper limits on light CP-odd Higgs boson search
 - First polarization measurement in $D^0 \rightarrow \omega \phi$
- Many analyses in progress!
- Further upgrade in energy (5.6 GeV) and luminosity (BEPCII-U, 3x) planned for the next year

PRL 128, 011803 (2022)

Thanks!

10-09-2022

Back-up slide

R-Value Measurement PRL 128, 062004 (2022)

Hadronization procedure in electron-positron annihilation:

Main features of the **LUARLW** model:

- A self-consistent inclusive generator developed based on JETSET.
- Initial-state radiation (ISR) process is implemented from $2m_{\pi}$ to \sqrt{s} .
- Kinematic quantities of initial hadrons are sampled by the Lund area law.
- Phenomenological parameters are tuned based on comparisons between data and MC.