Elliptic flow of hadrons in relativistic heavy-ion collisions using the PHSD model

Vipul Bairathi¹, Sonia Kabana¹

¹Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile Towseef Bhat², Waseem Bhat², Shabir Bhat², Farooq Mir² ²University of Kashmir, Srinagar, Jammu and Kashmir, India

Outline:

- Introdution: Collective flow
- Results:
 - Charged hadron elliptic flow
 - Identified hadron elliptic flow
- Summary

Introduction: Collective Flow

Different flow harmonics

Elliptic flow (v₂)

Momentum space anisotropy in the azimuthal angle distribution of produced particles with respect to the reaction plane.

- Sensitive to initial conditions of collisions
- Sensitive to transport properties (η/s) of system
- Probe for the particle production mechanism (e.g. quark coalescence)
- P. Klob, U. W. Heinz, Nucl. Phys. A715, (2003) 653c

Flow Measurements

▶ Single particle distribution:

$$E \frac{d^3N}{dp^3} = \ E \frac{d^2N}{2\pi p_T dp_T d\eta} \left[1 + 2 \ \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos \left\{ n(\phi - \Psi_n) \right\} \right]$$

anisotropic flow $v_n = \langle \cos \left[n(\phi - \Psi_n) \right] \rangle$, $\Psi_{\rm n} = {\rm n^{th}}$ -order reaction plane angle

η-sub event plane method

$$\Psi_{n} = \frac{1}{n} \tan^{-1} \left(\frac{\sum_{i=1}^{M} w_{i} \sin(n\phi_{i})}{\sum_{i=1}^{M} w_{i} \cos(n\phi_{i})} \right)$$

$$\boldsymbol{R_n} = \sqrt{\langle \cos\left[n(\boldsymbol{\Psi}_n^A - \boldsymbol{\Psi}_n^B)\right]\rangle}$$

Event plane angle calculated in two sub-events A $(0.05 < \eta < 1.0)$ and B $(-1.0 < \eta < -0.05)$.

• L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902 (2013)

Results: Charged Hadrons Elliptic Flow

- Elliptic flow <v₂> increases from central to pheripheral collisions showing strong centrality dependence.
- $<v_2 >$ with respect to $\psi_2 \{ \eta sub \}$ in Au+Au collisions at $E_{lab} = 35$ A GeV from the PHSD model is similar to the Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Differential $v_2(p_T)$

- Elliptic flow $v_2(p_T)$ increases monotonically with transverse momentum (p_T) till 2.0 GeV/c.
- Differential v₂(p_T) also increases from central to pheripheral collisions showing strong centrality depdendence.
- Differential $v_2(p_T)$ in Au+Au collisions at $E_{lab} = 35$ A GeV from the PHSD model is similar to the Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.

• L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Results: Identified Hadrons Elliptic Flow

- Identified hadron v_2 (p_T) in Au+Au collisions at $E_{lab} = 35$ A GeV from the PHSD model calculated with respect to the event plane and participant plane angle is compared to the published STAR experimental results from Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV.
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88, 014902 (2013)

NCQ Scaling

Hydrodynamics flow:

- ▶ large v_2 for lighter mass particles compare to the heavier mass particles consistent with the hydrodynamics flow.
- ► Mass ordering of v₂ below p_T < 1.5 GeV/c indicates effect of radial flow.

Hadronisation via quark coalescence:

- ► Elliptic flow v_2 of baryons > mesons above intermediate $p_T \approx 1.5$ GeV/c. v_2 scaled by number of constituent quarks (n_q) follows a single curve.
- ► The NCQ scaling of identified hadron v₂ suggests quark coalescence as dominate particle production mechanism.

Summary

• Inclusive and identified hadron elliptic flow v_2 at mid-rapidity measured using eta-sub event plane method is presented for Au+Au collisions at $E_{lab} = 35$ A GeV from the PHSD model.

Sensitive to initial conditions

- v₂ increases from central to pheripheral collisions showing strong centrality dependence indicates senstivity towards the initial conditions.
- Elliptic flow v_2 measured with respect to the participant plane angle is lower compared to the $\psi_2\{\eta\text{-sub}\}$ also indicate effect of initial condition of the colliding system.

Hydrodynamic flow and partonic collectivity

- Mass ordering of v_2 at low $p_T < 1.5$ GeV/c suggest hydrodynamic flow of identified hadrons.
- Number of constituent quarks scaling of v_2 at intermediate p_T indicates parton coalescence as dominate particle production mechanism.

Thank you!

Backup

centrality selection

Centrality Selection is based on reference multiplicity (N_{ch} in |eta| < 0.5) in the PHSD model same as in case of the experimental measurements.

