Search for invisible decays of dark photon at BESIII

Sonia Kabana

(On behalf of the BESIII Collaboration)

Email: Sonja.Kabana@cern.ch

Instituto de Alta Investigacion Universidad de Tarapaca, Chile

Motivation

- Many extensions of the Standard Model (SM) introduce light weak interacting dark matter (DM) hidden sectors
 - ✓ Motivated by recent experimental anomalies and theoretical prejudice
 - ✓ The DM hidden sectors couple to the SM particles via the so called "portals" like the dark photons.
 - ✓ These new particles can be accessible by high intensity e+e- collider experiments, such as **BESIII experiment**, if their masses are in the MeV-GeV range.

The state of the s

R. Essig et al., arXiv: 1311.0029 (2013)

BESIII Experiment

Multilayer drift chamber (MDC)

- He/C_3H_8 (60/40)
- 43 layers
- Momentum resolution $\sigma_p/p \approx 0.5\%$ @ 1 GeV Spatial resolution $\sigma_{xy} \approx 130~\mu m$.

Super conducting magnet

✓ 1 Tesla

[Nucl. Instrum. Meth. A614, 345-399 (2010)]

Time of Flight (TOF)

- 2 layer plastic scintillators
- $\sigma_T \approx 80 \text{ ps (barrel)}$
- $\sigma_{\rm T} \approx 110~{\rm ps}~({\rm endcap})~({\sim}65~{\rm ps}$ after upgradation with MRPC)
- Particle id

Muon system

- 9 layers of RPC
- P > 400 MeV/c
- $\delta \mathbf{R} \phi \approx 1.4 1.7 \text{ cm}$

Electromagnetic calorimeter (EMC) (CsI(Tl))

- → 6240 crystals overall
- $\sigma(E)/E \approx 2.5\%$

• $\sigma_{Z,\phi}(E) \approx 0.5$ – 0.7 cm Will replace the inner part of the drift chamber by the three layers of CGEM detector.

BESIII Dataset

World largest data for

- ✓ Charmonium spectroscopy
- √ Charm physics
- ✓ Light hadrons
- ✓ New physics search

IDEAL ENVIRONMENT TO STUDY HADRON SPECTROSCOPY & SEARCH FOR NEW PHYSICS PHENOMENA!!

Dark photon

New Models introduce new dark force carriers (e.g. dark-photon A' or γ') with light hidden sectors.

N. Arkani-Hamad et al, PRD 79, 015014 (2009)

- ❖ Produces high-energy (~100 GeV) cosmic-ray electrons and positrons.
- Could explain the features of astrophysical observations.

• Interaction with Standard Model via kinetic mixing with mixing strength (ε) .

 ϵ = hypercharge mixing strength.

***** Kinematic mixing generates non-zero coupling of SM fermions to A': $\alpha_D = \alpha \epsilon$, where α_D and α are fine structure constants in dark and Standard Model sectors, respectively.

B. Batell, et al, PRD79, 115008 (2009); R. Essig, et al, PRD80 015003 (2009)

Search for invisible decays of dark photon

Used 14.9 fb⁻¹ of e⁺e⁻ annihilation data taken at center-of-mass energies from 4.13 to 4.60 GeV to perform this search

Search is performed via Initial-State-Radiation (ISR) production (e+e- $\rightarrow \gamma_{ISR} \gamma'$), where γ_{ISR} is an ISR photon.

Energy of monochromatic photon:

$$E_{\rm ISR} = \frac{s - m_{\gamma'}^2 c^4}{2\sqrt{s}},$$

No evidence of dark photon production is found.

90% confidence level upper limit on ϵ

 ϵ = hypercharge mixing strength between Standard Model and dark sectors

- Our limit is comparable with the BaBar measurement.
 - Phys. Rev. Lett. 119, 131804 (2017)
- Future BESIII data may improve sensitivity.
- Submitted to Phys. Lett. B, arXiv: 2209:13893 (2022)

Summary and conclusion

- We search for invisible decays of a dark photon via initial State Radiation $e^+e^- \to \gamma\gamma'$ process using the data –sets taken at center-of-mass energies from 4.13 to 4.60 GeV by the BESIII detector.
- We find no evidence of dark photon production.
- Set 90% confidence upper limit on the kinematic mixing strength between Standard Model and dark sectors.
- Our limit is comparable with the BaBar measurement.
- Submitted to Phys. Lett. B, arXiv:2209:13893 (2022)