# Welcome to BSW22 Valencia !



ARIES WP6 APEC & iFAST WP5.2 SMART PAF brainstorming & strategy *inperson non-virtual* meeting

29 March – 1 April 2022



organizers: Angeles Faus Golfe (IJCLab), Giuliano Franchetti (GSI), Frank Zimmermann (CERN)



# what is/was ARIES WP6 ?



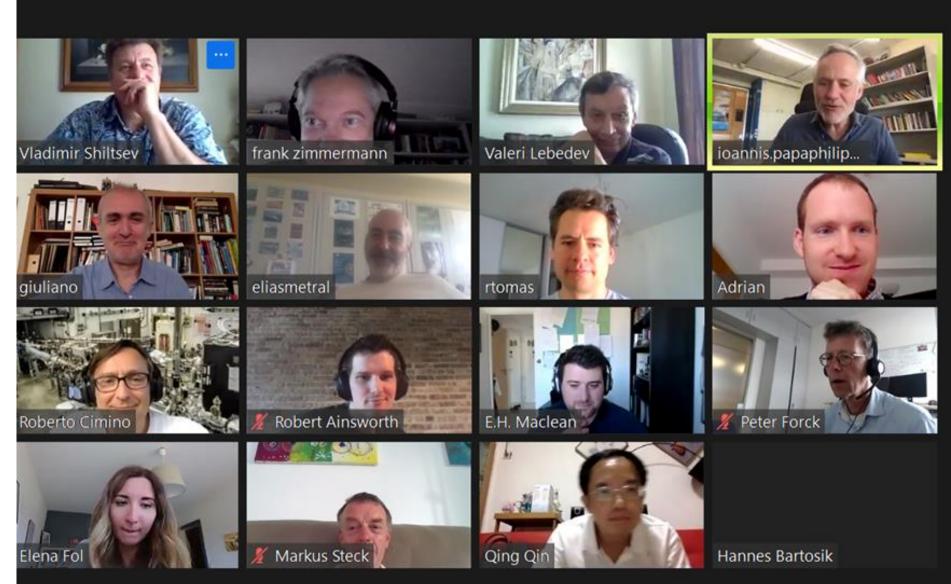
# Accelerator Performance and Concepts (APEC) 2017-2021

http://aries.web.cern.ch/content/wp6

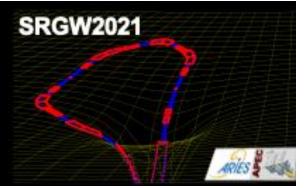
coordinators: Alessandro Drago (INFN-LNF), Giuliano Franchetti (GSI & GUF), Johannes Gutleber (CERN), Klaus Höppner (HIT), Florian Hug (JGU), Mauro Migliorati (Sapienza), Marco Zanetti (Padua) and Frank Zimmermann (CERN)

#### **HORIZON 2020**




<u>ARIES-APEC workshop on "Mitigation Approaches for Hadron Storage Rings and Synchrotrons</u>" (Mitigations2020) was held, during the covid-19 pandemic, from 22 June to 1 July in a safe virtual space; chaired by G. Franchetti and F. Zimmermann



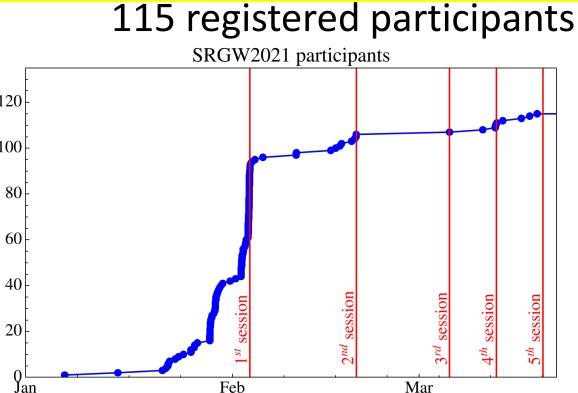

# summary report from scientific secretaries

(Alexander Engeda, Elena Fol, Michael Hofer, Annemarie Lauterbach, Giulia Russo, Tirsi Prebiba) + survey on SC mitigation

#### 118 participants



ARIES Workshop on Storage Rings and Gravitational Waves (SRGW2021), virtual space, 2 February -18 March 2021; chaired by G. Franchetti, Marco Zanetti, and F. Zimmermann




| nmittee     |                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------|
| MIT         |                                                                                                       |
| NTU         |                                                                                                       |
| IPHT        |                                                                                                       |
| LAPP        | 120                                                                                                   |
| air) GSI    |                                                                                                       |
| Indiana U   | 100                                                                                                   |
| CERN & KEK  |                                                                                                       |
| & U. Peking | nts 80                                                                                                |
| CERN        | participants<br>09 08                                                                                 |
| U. Padova   | rtic                                                                                                  |
| nair) CERN  | pa                                                                                                    |
|             | #                                                                                                     |
|             | MIT<br>NTU<br>IPHT<br>LAPP<br>air) GSI<br>Indiana U<br>CERN & KEK<br>& U. Peking<br>CERN<br>U. Padova |

**main focus:** detection and/or generation of gravitational waves or other gravity effects using storage rings & accelerator technologies

#### Sessions:

2/2/2021, Introduction to Gravitational Waves and their effects, chair: Pisin Chen / NTU Taiwan
18/2/2021, Measurements and sensitivity, chair: Shyh-Yuan Lee / Indiana U
4/3/2021, Proposals and Schemes, chair: Jörg Wenninger / CERN
11/3/2021, Gravitational wave generation and detection, chair: Frank Zimmermann / CERN
18/3/2021, Ground motion and final discussion, chairs: Giuliano Franchetti/GSI; John Ellis/CERN



#### **ARIES WP6 milestones and deliverables**



a job well done

### White List of Ranked Far-Future Accelerator Options

April 2021

| Time scale  | Priority and focus                                  | ARIES D6.5 |
|-------------|-----------------------------------------------------|------------|
| 10-15 years | Energy recovery                                     |            |
|             | Crystal bending                                     |            |
|             | Gamma Factory                                       |            |
| 15-30 years | Proton based muon collider                          |            |
|             | Plasma acceleration                                 |            |
|             | Positron based muon collider                        |            |
|             | Crystal and nanostructure acceleration              |            |
|             | Gravitational wave detection using storage rings    |            |
|             | Low or no priority                                  |            |
|             | Photon collider                                     |            |
|             | Crystalline beams                                   |            |
|             | "Moessbauer acceleration" using photon entanglemen  | t          |
|             | Gravitational wave generation using accelerators    |            |
|             | Non-electromagnetic acceleration or focusing mechan | isms       |

# key results from WP6 APEC

#### • ERL R&D guidelines [D6.4]

(1) test facilities, (2) beam dynamics & diagnostics, (3) electron sources & injectors, (4) SRF: high loaded Q cavity operation; HOMs, HOM damping & high current operation; high Q<sub>0</sub> cavity performance

#### • optimal RAMS characteristics for accelerators [D6.2]

availability critical systems and availability model (FCC-ee); measures to improve reliability of power converters, RF system, and electrical distribution (lead causes of unavailability for CERN's normal conducting machines); operations modelling platform (FCC-hh) for allocating availability goals to different sub-machines, fault-tolerant system design

#### • performance limitations in hadron synchrotrons [D6.1]

beam loss, single-bunch instabilities, & nonlinearities prominent

#### • mitigation measures [MS31, D6.3]

Landau octupoles, bunch-by-bunch feedback, optimised tunes, and tailored slippage factor; novel techniques emerging; for <u>Space Charge</u>: reduced the peak intensity (CERN, PSB, JPARC), resonance compensation, optimized lattice & working point; future e-lenses; <u>Impedance</u>: mechanical design optimization, feedback systems, advanced coatings (HTS,...)

#### • ranking of (far-)future accelerator options [D6.5]


- (1) energy recovery linacs, crystal bending, Gamma Factory
- (2) muon collider(s), plasma & crystal & nanostr. acceleration, gravitational wave detection





### WP5: Strategies and Milestones for Accelerator Research and Technologies (SMART)

Peter Forck (GSI), Giuliano Franchetti (GSI), Nadia Pastrone (INFN),



Frank Zimmermann (CERN)



**Participating Institutes:** 

INFN, CERN, CEA, CNRS, KIT, PSI, United Kingdom Research and Innovation, GSI, Bergoz Instrumentation, Barthel HF-Technik GmbH, HIT Heidelberg + JGU Mainz

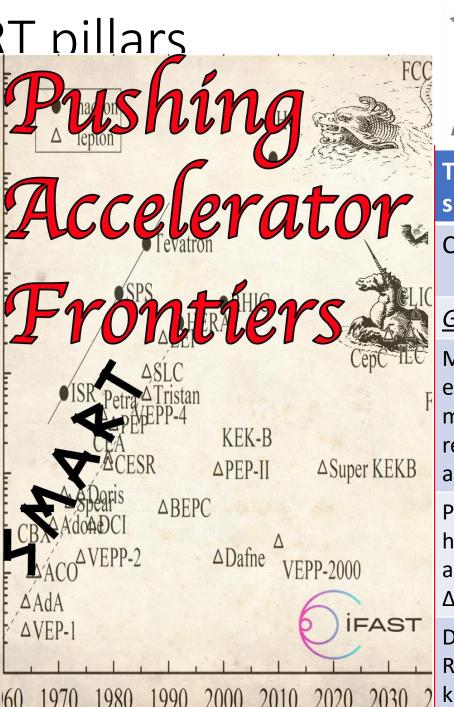


This project receives funding from the European Union's Horizon 2020 Research and

Innovation programme under GA No 101004730.

# the three SMART nillars

Task 5.1 MUon colliders STrategy network (MUST)


Coord.: Nadia Pastrone (INFN)

<u>INFN</u>, CERN, CEA, CNRS, KIT, PSI, UKRI

Support the effort to design a muon collider and to project and plan the required R&D.

Consolidate the community devoted to developing an international future facility.

Prepare the platform to disseminate the information



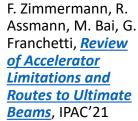


Task 5.3 Improvement of Resonant slow EXtraction spill quality (REX)

Coord.: Peter Forck (GSI)

#### <u>GSI</u>, BI, BT, CERN, HIT

Mitigate intensity fluctuations of slowly extracted beam from synchrotrons by means of detailed parameter simulations, related experimental verifications, and active beam control


Produce a prototype of improved hardware for power supply control to achieve a current stability in the range of  $\Delta I / I < 10^{-6}$ .

Design and produce a high-performance RF-amplifier with versatile control for knock-out extraction.

# Task 5.2 Pushing Accelerator Frontiers (PAF)

- Main tools: topical workshops and dedicated prospective studies
- Overriding goal: survey frontiers of classical accelerators and develop long-term strategies for boosting the performance of future facilities and for overcoming limitations
- Thrust 1: networking on novel intense positron sources, providing a "condensation point" for the worldwide positron-source community (CNRS – Iryna Chaikovska)
  - different methods of  $e^{\scriptscriptstyle +}$  production, both classical techniques & especially novel/exotic ones
- Thrust 2: survey extreme beams and ultimate limits, and examine approaches to overcome the present limits on beam brightness (CERN Frank Zimmermann, GSI Giuliano Franchetti)
  - space-charge compensation or cooling, crystalline beams,...
  - review the ultimate limits on high-gradient acceleration, high-field bending, beam size, beam density, and luminosity







# Task 5.2 Pushing Accelerator Frontiers (PAF) – cont'd

• Thrust 3: artificial intelligence for accelerators, exploring applications of machine learning, deep learning, advanced optimization algorithms and neural networks, for accelerator control and design (PSI – Rasmus Ischebeck)

- Thrust 4: accelerators for "dark sector"& precision physics (CERN – Christian Carli, GSI – Bernd Lorentz)
  - accelerator/beam requirements for dark-sector searches in fixed-target experiments
  - investigating current precision frontier accelerator developments, such as EDM ring designs

# focus of the Valencia meeting !





# Task 5.2 Pushing Accelerator Frontiers (PAF) – cont'd

Thrust 5: green accelerators, sustainable accelerator concepts, e.g. energy recovery, energy efficiency, and possibly particle (e.g. positron) recycling (CERN, GSI, CNRS, PSI, + JGU –

Florian Hug)



WP5 - Task 5.2 PAF synergies:

with Task 5.1 MUST: positron sources, ultimate limits, and particle recycling ... with the Task 5.3 REX: dark sector fixed-target experiments and machine learning ...

 $\rightarrow$  PAF will develop a coherent landscape for future accelerators and issue targeted R&D recommendations

# PAF workshops so far

• Extreme Storage Rings Workshop (ESRW22) – virtual – 31 January to 8 February 2022, see next page



- Cross-boundary subjects with added value from collaboration and sharing of resources.
- Collaborative schemes involving laboratories, university and industry.
- Priority to longer-term high-risk high-gain R&D.

100

relative detuning [Г/2]

8000 ions with  $d = 20 \mu$ 



Dima Budke

Intensity [arb]

Kevin Brown Chain of Ions traveling Ion spacing is d. with velocity v past # of ions that fit in berth =  $n_{i}$ vacuum herth  $n_w = \left|\frac{a}{d}\left(1 + \frac{r}{l}\right)\right|$ 02 Acoustic  $Z_R$ Optical Berth 1 berth Deflector berth 24 (AOD 1) Laser 1 targeting Ion 1 Berth spacing is s. Travel time from berth 1 to 2, Chain of Ions traveling berth 2 with velocity v past vacuum berth 2 lon chains are  $\Delta t_{w}$  in time. berth 3  $\alpha$ circulating around Acoustic the ring at a Optical Berth 2 Deflector 2 Lasers are fired constant velocity. synchronously with Laser 2 targeting Ion 2 the arrival of the ions in each berth. At each berth there is a laser to set states and a laser/measurement system to measure states. Rrookbavan

# WP5 deliverables

D5.1: International collaboration plans towards a multi-TeV muon collider M46 **Report on established collaboration and results disseminated by the action [MUST] D5.2: Roadmap for future accelerators** Strategy for intense positron sources; R&D plan towards ultimate beams; State of the art and possible directions for crystalline beams; M42 Strategy and requirements for EDM ring or other precision experiments; Roadmap for accelerator AI; State of the art and future roadmap for green accelerators [PAF]

D5.3: Ripple mitigation for slow extraction beam quality improvement

Simulation results for improvements including their experimental verifications, and M46 design considerations of the accelerator control with related hardware. [REX]

# WP5 milestones

| MS15        | International workshop on muon source design                                            | 5.1 | M18            |
|-------------|-----------------------------------------------------------------------------------------|-----|----------------|
| MS17        | Beam requirements for dark-sector searches                                              | 5.2 | M18<br>Oct. 22 |
| <b>MS18</b> | Present and future AI accelerator<br>applications                                       | 5.2 | M24<br>May 23  |
| MS20        | Engineering design of improved power supply current measurement and RF-amplifier layout | 5.3 | M24            |
| MS16        | International workshop to define R&D plans                                              | 5.1 | M36            |
| MS19        | Ultimate hadron-beam brightness                                                         | 5.2 | M48            |

# PAF workshops so far

- Extreme Storage Rings Workshop (ESRW22) virtual 31 January to 8 February 2022, see next page
- PAF brainstorming & strategy workshop, in 30 March 1 April, 2022 (departure 2 April) – this event !!
  - <u>topics:</u>

(1) present and future AI accelerator applications

(2) beam requirements and accelerators for the dark sector

different from a zoom meeting but be careful in shady streets (brazen thefts ! )

CEPT- 10

m

AGNO

WEDITERRA

#### already three results from last night

Gamma Factory inevitable
question marks on AWAKE and LHeC
solution for powering the FCC

#### today we will start with the dark sector

in recent years more and more ideas and proposals :

- SHIP, FASER,... subsequent generations, ... g-2, EDM...
- DASEL, eSPS,... what exactly is needed ?
- can advanced accelerator concepts find a purpose here?
- intra-workshop theme :

might machine learning help the dark sector accelerator searches?