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MACHINE LEARNING LANDSCAPE

▸ Before we start, a bit of context
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MACHINE LEARNING LANDSCAPE

▸ What is an “eight”?

3Rasmus Ischebeck

8		9



MACHINE LEARNING LANDSCAPE
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APPLICATIONS TO ACCELERATORS

▸ What is a “faulty BPM”?

6Elena FolRasmus Ischebeck

Local	outliers	while	global	beta-		beating	is	
expected	to	be	uniform

Causes	a	spike,		obviously,	
a	bad	BPM

Causes	a	spike,	but	how	to	detect		before	
computing	the	optics?



“AN OBSERVATION WHICH 
DEVIATES SO MUCH FROM  
OTHER OBSERVATIONS AS TO 
AROUSE SUSPICIONS THAT IT  
WAS GENERATED BY A 
DIFFERENT MECHANISM."

Stephen Hawking

ANOMALY DETECTION 7



Relevant	ML	concepts	and	definitions

Supervised	Learning

• Input/output	pairs	available

• Learn	a	mapping	function,

generalizing	for	all	provided	data


• Predict	from	unseen	data

Unsupervised	Learning


• Only	input	data	is	given

• Discover	structures	and	patterns

Regression

Classification Clustering

What	is	“Learning”? 8
Elena Fol



MACHINE LEARNING OUTSIDE THE ACCELERATOR WORLD

▸ Image recognition

9Thắng Phùng ĐìnhRasmus Ischebeck



MACHINE LEARNING OUTSIDE THE ACCELERATOR WORLD

▸ Social media

10Photo by Amanda Vick on UnsplashRasmus Ischebeck

https://unsplash.com/@amandavickcreative?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/tiktok?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


MACHINE LEARNING OUTSIDE THE ACCELERATOR WORLD

▸ Marketing
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USE OF MACHINE LEARNING FOR ACCELERATORS

12Rasmus Ischebeck

Artificial Intelligence 
Machine Learning 

Deep Learning

Optimization

Instrumentation 
Surrogate Diagnostics

Modeling 
Surrogate Models 
Accelerator Design

Fault Detection

Data Acquisition 
Data Reduction 
Data Analysis



EXAMPLES OF APPLICATIONS OF AI/ML/DL

▸ Cases of problems that could be solved only with AI/ML/DL


▸ … ?


▸ Applications enabled by AI/ML/DL that took less effort than manual coding


▸ Safe optimization of accelerators


▸ Virtual diagnostics


▸ Detection of faulty diagnostics


▸ Use of ML for accelerator design


▸ Use for data analysis

13Rasmus Ischebeck



APPLICATIONS OF ML TO 
ACCELERATOR OPERATION

Rasmus Ischebeck 14



SAFE OPTIMIZATION OF ACCELERATOR PERFORMANCE

▸ Two examples from PSI:


▸ SwissFEL: optimization of the pulse energy while keeping losses in the 
undulators low


▸ HIPA: optimization of an accelerator that is limited by beam loss


▸ One example from Elettra


▸ Optimization of the FEL by straightening the trajectory

15Rasmus Ischebeck
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How does Safe Bayesian Optimization work?

Motivation for tuning: optimize the X-ray pulse for experiments
>> pulse energy
>> pulse length
>> wavelength
>> spectral width
>> stability

X-ray pulse depends exponentially on electron beam properties
—> many coupled tuning parameters
—> optimum is difficult to achieve manually

Noisy environment, and parameter drifts
Independent feedbacks try to keep the beam properties constant

Different experiments have different requirements on the X-ray pulse
—> tuning is a recurring task

Time at free electron lasers is valuable, facility is expected to be highly overbooked
Less time for tuning means more time for experiments

>> In general, hyper-parameter selection in Bayesian optimization is difficult (e.g. kernel length scales)
>> Some parameter changes can require a significant settling time of the feedback systems ~ 10 s or more
>> The FEL pulse energy measurement can be rather noisy (standard error in the order of 3% of the signal 
when averaging over 30 shots) so a compromise between longer averaging time and higher uncertainties 
has to be found
>> If the optimization runs for a longer period there can be machine drifts leading to a higher or lower 
signal

We are interested in solving the following constraint optimization problem, 

where f is the objective function (e.g. the FEL pulse energy) and s is a safety constraint (e.g. beam loss sig-
nals), which has to be kept below a theshold c. Both, f and s can only be accessed through point evaluations.

In Bayesian optimization, a probability distribution is used as prior over a set of functions. Using the prior 
and the observed data, one can calculate a posterior distribution, which yields a confidence band containing 
the true function with high probability. This information is used by Bayesian optimization algorightms to effi-
ciently and safely optimize the function. 

Tuning 5 matching quadrupoles before the undulators

Optimization by skilled experts
>> systematic scans
>> skilled experts manually tuning sensitive knobs
>> random walk optimization

This is time consuming but very safe and yields great increases of the FEL pulse energy

The 5 matching quadrupoles located right before the undulators are sensitive tuning knobs to increase 
FEL pulse energy

The mean value of the quadrupole current has been subtracted for better visibility and the curves are 
displaced in y-direction. 
Top left: Evolution of the quadrupole settings over 250 steps of safe Gaussian process upper confidence 
bound (GPUCB) optimization and expansion. 
Bottom left: Corresponding values of the FEL pulse energy for each of the evaluation points. The limit for 
the FEL pulse energy was set to 30 µJ.  The error bars are the standard deviations of the 10 FEL pulse 
energy readings at every evaluation point.
Right: Building up on the previous run, Gaussian process optimization was used to optimize the system 
and the FEL pulse energy could be significantly increased.  No active expansion was performed any 
more. 

Safe Optimization of  2 matching quadrupoles

We would like to acknowledge the great support from 
>> beam super dynamics experts giving us feedback which knobs might be suitable, 
>> the electron & photon diagnostics group supplying us with detectors that give us signals to read, 
>> the controls group giving us accounts on their “toys” and counseling us, 
>> the operation team for their support during the optimization shifts
>> the photonics crew for bearing with us “parasitically” tuning the machine
>> Felix Berkenkamp for helpful discussions
The work is supported by the Swiss National Science Foundation under grant 200020_159557.

For this example only 2 of the matching quadrupoles were changed to allow better visualization. 

The plots show a normalized parameter space. The contour shows the model prediction of the FEL pulse 
energy in uJ. The area inside the red dashed line shows the safe set. The orange crosses are evaluation 
points automatically chosen to expand the safe set and the blue crosses show steps chosen by GPUCB to 
learn more about the optimum. The black crosses show the optimum predicted by the model. 

max
x

f(x) s.t. s(x) ≤ c

The figure shows two instances of a Gaussian Process, used as probabilistic model for the objective func-
tion and a safety constraint. Using the confidence intervals (shaded region), a safe set can be determined 
where the safety function is guaranteed to be below the threshold.

Bayesian Optimization for Tuning SwissFEL
Nicole Hiller, Franziska Frei, Rasmus Ischebeck, Johannes Kirschner, Andreas Krause, Mojmir Mutny

Example: Tuning of Quadrupole Settings

Challenges

Tuning of SwissFEL

Bayesian Optimization

Current Tuning Approach

accelerating structures

electron source
e-bunch compressors

experiments

undulators

FEL pulse energy

beam loss monitors

matching quadrupoles

gun corrector quadrupoles

Acknowledgements

Figure	courtesy	of	J.	Kirschner
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First Results

Figure	courtesy	of	J.	Kirschner

Motivation for tuning: optimize the X-ray pulse for experiments
>> pulse energy
>> pulse length
>> wavelength
>> spectral width
>> stability

X-ray pulse depends exponentially on electron beam properties
—> many coupled tuning parameters
—> optimum is difficult to achieve manually

Noisy environment, and parameter drifts
Independent feedbacks try to keep the beam properties constant

Different experiments have different requirements on the X-ray pulse
—> tuning is a recurring task

Time at free electron lasers is valuable, facility is expected to be highly overbooked
Less time for tuning means more time for experiments

>> In general, hyper-parameter selection in Bayesian optimization is difficult (e.g. kernel length scales)
>> Some parameter changes can require a significant settling time of the feedback systems ~ 10 s or more
>> The FEL pulse energy measurement can be rather noisy (standard error in the order of 3% of the signal 
when averaging over 30 shots) so a compromise between longer averaging time and higher uncertainties 
has to be found
>> If the optimization runs for a longer period there can be machine drifts leading to a higher or lower 
signal

We are interested in solving the following constraint optimization problem, 

where f is the objective function (e.g. the FEL pulse energy) and s is a safety constraint (e.g. beam loss sig-
nals), which has to be kept below a theshold c. Both, f and s can only be accessed through point evaluations.

In Bayesian optimization, a probability distribution is used as prior over a set of functions. Using the prior 
and the observed data, one can calculate a posterior distribution, which yields a confidence band containing 
the true function with high probability. This information is used by Bayesian optimization algorightms to effi-
ciently and safely optimize the function. 

Tuning 5 matching quadrupoles before the undulators

Optimization by skilled experts
>> systematic scans
>> skilled experts manually tuning sensitive knobs
>> random walk optimization

This is time consuming but very safe and yields great increases of the FEL pulse energy

The 5 matching quadrupoles located right before the undulators are sensitive tuning knobs to increase 
FEL pulse energy

The mean value of the quadrupole current has been subtracted for better visibility and the curves are 
displaced in y-direction. 
Top left: Evolution of the quadrupole settings over 250 steps of safe Gaussian process upper confidence 
bound (GPUCB) optimization and expansion. 
Bottom left: Corresponding values of the FEL pulse energy for each of the evaluation points. The limit for 
the FEL pulse energy was set to 30 µJ.  The error bars are the standard deviations of the 10 FEL pulse 
energy readings at every evaluation point.
Right: Building up on the previous run, Gaussian process optimization was used to optimize the system 
and the FEL pulse energy could be significantly increased.  No active expansion was performed any 
more. 

Safe Optimization of  2 matching quadrupoles

We would like to acknowledge the great support from 
>> beam super dynamics experts giving us feedback which knobs might be suitable, 
>> the electron & photon diagnostics group supplying us with detectors that give us signals to read, 
>> the controls group giving us accounts on their “toys” and counseling us, 
>> the operation team for their support during the optimization shifts
>> the photonics crew for bearing with us “parasitically” tuning the machine
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The work is supported by the Swiss National Science Foundation under grant 200020_159557.

For this example only 2 of the matching quadrupoles were changed to allow better visualization. 

The plots show a normalized parameter space. The contour shows the model prediction of the FEL pulse 
energy in uJ. The area inside the red dashed line shows the safe set. The orange crosses are evaluation 
points automatically chosen to expand the safe set and the blue crosses show steps chosen by GPUCB to 
learn more about the optimum. The black crosses show the optimum predicted by the model. 
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x

f(x) s.t. s(x) ≤ c

The figure shows two instances of a Gaussian Process, used as probabilistic model for the objective func-
tion and a safety constraint. Using the confidence intervals (shaded region), a safe set can be determined 
where the safety function is guaranteed to be below the threshold.
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From Linear Least Squares to Gaussian Processes

Least squares regression in a Hilbert space H:

f̂ = argmin
f2H

TX

t=1

�
f (xt)� yt

�2
+ kf k2

H

Closed form solution if H is a Reproducing Kernel Hilbert Space!

Defined by a kernel k : X ⇥ X ! R.

Example: RBF Kernel k(x , y) = exp
⇣
�kx�yk2

2�2

⌘

Kernel characterizes smoothness of functions in H.

4Johannes	Kirschner



COMPARISON OF OPTIMIZATION ALGORITHMS

19Nicole HillerRasmus Ischebeck

Bayesian Optimisation at SwissFEL

�8

0 200 400 600
0

1

2

3

4

5

FE
L

Pu
ls

e
En

er
gy

(a
.u

.)

Nelder-Mead Avg
LineBO Avg
Parameter Scan

Final Energy

In
iti

al
Pa

ra
m

et
er

Sc
an

N
el

de
r-

M
ea

d
R

un
1

N
el

de
r-

M
ea

d
R

un
2

Li
ne

B
O

R
un

1
Li

ne
B

O
R

un
2

0 200 400 600 800
0

1

2

3

4

FE
L

Pu
ls

e
En

er
gy

lower bound on FEL signal

evaluations below threshold

SafeLineBO

LineBO

0 500 1000 1500
0

1

2

3

4

5

FE
L

Pu
ls

e
En

er
gy

initial value

final value

Still	works	fast	with	40	Parameters!

Tuning	at	about	1	Hz:	500	steps	=	8	min

Benchmarking	against	other	
algorithms! 
(24	Parameters)

Adding	Safety	Constraints 
(24	Parameters)



• safe	variants	competitive

• non-safe	methods	create	interlocks	(violate	constraints)

• proves	constraints	are	working

HIPA RESULTS

20Jochem SnuverinkRasmus Ischebeck



Giulio Gaio – Experience with tuning at FERMI@ElettraIFCA Machine Learning Workshop, SLAC, 28/02 – 02/03 2018 21

• 13 Beam Position Monitors (26 variables)

• Objective function: FEL-2 intensity estimated by a photocurrent of a 

mirror installed in front of the experimental chamber  
• Passive mode (no excitation)

• 3X average FEL energy

Statistical Optimization of the electron beam 
trajectory in the undulators

8 min – 10Hz – 8 iterations



DETECTION OF FAULTY DIAGNOSTICS

▸ One example from CERN: 


▸ Detection of faulty beam position monitors


▸ One example from DESY:


▸ Detection of faults in the superconducting RF system

22Rasmus Ischebeck



Measuring	the	optics
Turn-by-turn	beam	position

Po
sit
io
n	
[m

m
]

Turn	no.


• Excite	the	beam	to	perform	transverse		
oscillations.

Spectrum

Frequency

Am
pl
itu

de

Denoising	(SVD)		
Signal	cuts

What	are	the	limitations	of	traditional	techniques? 23

Semi-automatic	and		
manual	cleaning	of		

outliers

Optics

Unphysical	values	still		
can	be	observed

• Compute	 beta-beating		
and	other	optics	functions

Δ𝛽
/ 𝛽

• Harmonic	analysis	using		
Fast	Fourier	Transform	(FFT)

➔ Beam	Position	Monitors	(BPMs)	to		
measure	the	beam	centroid	turn-by-turn

Elena Fol



• Faulty	BPMs	are	a-priori	unknown:	no	ground	truth	➔ Unsupervised	Learning


• Applied	clustering	algorithms:	DBSCAN[1],	Local	Outlier	Factor[2],

anomaly	detection	using	Isolation	Forest[3]	implemented	with	Scikit-Learn.

17

Detection	of	faulty	Beam	Position	Monitors	

Instrumentation	faults	detection

1.	“A	Density-Based	Algorithm	for	Discovering	Clusters	in	Large		
Spatial	Databases	with	Noise”	Ester,	M.,	H.	P.	Kriegel,	J.	Sander

2.Breunig,	M.	M.,	Kriegel,	H.	P.,	Ng,	R.	T.,	&	Sander,	J.	(2000,	May).,	LOF:	identifying	density-based		
local	outliers

3. Liu,	Fei	Tony,	Ting,	Kai	Ming	and	Zhou,	Zhi-Hua.	“Isolation	forest.”	Data	Mining,	2008.	ICDM‘08.

Harmonic	analysis	of	all	BPMs
Detection	of	faulty	signal

prior	to	optics	computation

• Outlier	detection	based	on

combination	of	several	signal	properties


• Immediate	results

Avoid	the	appearance	of		
erroneous	optics	computation

Elena Fol



19

Detection	of	faulty	Beam	Position	Monitors

Instrumentation	faults	detection

✓ Fully	integrated	into	optics	measurements	at	LHC

✓ Successfully	used	in	operation	under	different	optics	settings.

• Instant	faults	detection	instead	of	offline		
diagnostics.

• Full	 optics	 analysis	 is	 possible	 directly	
during	 	 dedicated	 measurements	 session	
instead	 of	 	 iterative	 procedure	 of	 cleaning	
and	analysis.

Published	in:	Physical	Review	Accelerators	and	Beams:

“Detection	of	faulty	beam	position	monitors	using	unsupervised	learning”,	Phys.	Rev.	Accel.	Beams	23,	102805.

Reduction	of	non-physical	outliers	in	beta-beating:		
Averaged	cleaning	results,	optics	measurements	in	2018.

Observed outliers

IF-identified bad BPMs

Elena Fol



Challenges and potential ML needs and applications for FEL Facilities Raimund Kammering, DESY 26

Areas for potential ML applications – Anomaly detection for the cavity signals 
‣ Cavity fault detection requires: Ufor, Uref, Uprobe


‣ Data rates to DAQ per cavity per pulse:

‣ 2048 x 2 x 3 x 16bit = 24.6kB

‣ Pulses per Day = 864000

‣ 700 cavities ! 604 Mio events/day

‣ Total data/day = 14.8 TB


‣ Good statistics (ensemble & events)


Questions we like to address:

‣ How many cav./pulses behave normally

‣ Cav/Pulses out of nominal operation range

‣ Reliably quench detection and reaction

‣ Anomalies: due to parameter changes

‣ Anomalies: due to digital / communication/ readout 



VIRTUAL DIAGNOSTICS

▸ Use ML to predict the response of an instrument


▸ Invasive instruments (e.g. spectrometers, screens…)


▸ Fragile instruments


▸ Broken instruments

27Rasmus Ischebeck



VIRTUAL DIAGNOSTICS AT SINQ

28Jaime Coello de PortugalRasmus Ischebeck

Machine		
Learning		
Model

• The	VIMOS	system	monitors	the	SINQ	target	beam	spot	with	a	metal	grid.

• If	the	beam	is	focussed	too	much	or	changes	too	fast	interlocks	are	triggered.

• This	grid	is	degrading	over	time	and	cannot	be	replaced

• Can	we	use	other	sensors	to	predict	the	images?

Targets

Loss  
monitor  

s

Current  
monitor  

s

Position  
monitor  

s

Features





APPLICATIONS OF ML TO 
ACCELERATOR SIMULATION

Rasmus Ischebeck Photo by Caspar Camille Rubin on Unsplash 30
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OPTIMIZATION OF THE LCLS-II INJECTOR

33Lipi Gupta et al 2021 Mach. Learn.: Sci. Technol. 2 045025 Rasmus Ischebeck

-ACH� ,EARN�� 3CI� 4ECHNOL� � �����	 ������ , 'UPTA ET AL

&IGURE �� 2ESULT OF RUNNING A STANDARD OPTIMIZATION WITH -/'! ON THE SURROGATE MODEL� COMPARED WITH RESULTS FROM !STRA� )N
THIS CASE� THE OBJECTIVE WAS TO MAXIMIZE THE BEAM CHARGE AND MINIMIZE THE EMITTANCE� 4HE PREDICTED 0ARETO POINTS FROM THE
SURROGATE MODEL ARE ALSO VERIFIED BY RE
RUNNING THE INPUTS IN !STRA� 4HIS SHOWS THE MODEL IS RELIABLE FOR USE IN MULTI
OBJECTIVE
OPTIMIZATION AND CAN BE USED AS PART OF START
TO
END OPTIMIZATIONS FOR ,#,3
))�

&IGURE �� %NCODER
DECODER #.. ARCHITECTURE USED FOR PREDICTION OF BEAM TRANSVERSE DISTRIBUTIONS AND SCALAR BEAM PARAMETERS�
WITH THE 6## LASER DISTRIBUTION AS A VARIABLE INPUT� 4O PROCESS THE 6## IMAGES �BINNED INTO ��× �� PIXELS	� THE ENCODER CONSISTS
OF THREE CONVOLUTIONAL LAYERS WITH TEN FILTERS EACH� ALTERNATING WITH MAX POOLING LAYERS FOR �× DOWNSAMPLING� 4HE SCALAR INPUT
SETTINGS ARE CONCATENATED INTO THE FIRST OF FOUR FULLY
CONNECTED LAYERS IN BETWEEN THE ENCODER AND DECODER� 4HE SCALAR OUTPUTS ARE
OBTAINED FROM THE LAST OF THESE LAYERS� &INALLY THE DECODER #.. CONSISTS OF THREE CONVOLUTIONAL LAYERS ALTERNATING WITH �×
UPSAMPLING LAYERS� RESULTING IN AN OUTPUT TRANSVERSE BEAM PREDICTION IMAGE WITH ��× �� BINS�

MODEL PREDICTIONS� EVEN FOR CASES WITH IRREGULAR BEAM DISTRIBUTIONS �SEE FIGURES � AND ��	� 4HIS INDICATES THAT
THE MODEL CAN BE USED ONLINE WITH THE RUNNING ACCELERATOR TO PROVIDE NON
INVASIVE ESTIMATES OF THE
TRANSVERSE BEAM PROFILE �I�E� AS BOTH AN ONLINE MODEL OF THE INJECTOR AND A VIRTUAL DIAGNOSTIC	� SIMILAR TO HOW
AN ONLINE PHYSICS SIMULATOR COULD� BUT WITH MUCH FASTER
TO
EXECUTE PREDICTIONS� 4HE PERFORMANCE OF THE
MODEL ON BULK SCALAR PREDICTIONS IS SHOWN IN FIGURE ���

�� 4RANSFER LEARNING

4HE PREVIOUS SECTIONS DEMONSTRATED THE ABILITY OF THE SURROGATE MODEL TO RELIABLY EMULATE PREDICTIONS FROM
!STRA SIMULATIONS� (OWEVER� THE ISSUE OF HOW THESE PREDICTIONS COMPARE TO MEASURED BEAM PARAMETERS
REMAIN� "ECAUSE WE HAVE VERY LITTLE MEASURED DATA� WE GENERATED AN INITIAL MODEL TRAINED ON SIMULATION DATA
AND THEN MODIFY IT TO BE CONSISTENT WITH MEASURED DATA AFTERWARD� (ERE� WE DEVELOP AND DEMONSTRATE A 4,
PROCEDURE TO ACCOMPLISH THIS�

4, ENCOMPASSES A BROAD CLASS OF -, APPROACHES WHEREIN THE PERFORMANCE OF A MODEL AT A PARTICULAR TASK
OR DOMAIN MAY BE IMPROVED BY TRANSFERRING INFORMATION FROM ANOTHER RELATED BUT DIFFERENT TASK OR DOMAIN
;��=� )N TRADITIONAL APPROACHES TO -,� THE DISTRIBUTION OVER FEATURE SPACE AND THE DISTRIBUTION IN TARGET SPACE
MUST BE IDENTICAL DURING TRAINING AND DEPLOYMENT� )F ANY SUCH DIFFERENCES� TERMED DISTRIBUTION SHIFTS� EXIST�
THE PERFORMANCE OF THE TRAINED MODEL IS SEVERELY DEGRADED ;��=� 4, IS THUS ONE APPROACH TO HANDLE

�
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https://arxiv.org/abs/2008.04151
35



INVERSE DESIGN OF ACCELERATING STRUCTURES

36Jelena Vučković, Neil Sapra: Science 367, 79–83 (2020)Rasmus Ischebeck



INVERSE DESIGN OF THz STRUCTURES

37Benedikt HermannRasmus Ischebeck
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DATA ACQUISITION AND ANALYSIS
Rasmus Ischebeck 38



MACHINE LEARNING FOR HEP DATA ANALYSIS

39Peter WienemannRasmus Ischebeck

▸ Improving interpretation of detector data 
(2002)



WE HAVE A PROBLEM…

40Rasmus Ischebeck
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SUMMARY

▸ Use machine learning…


▸ …when you have lots of data, and the algorithm to analyze it is not obvious


▸ …when you have pre-classified cases (be it from simulations, from other 
detectors, or from manual classification)


▸ …when speed matters


▸ …when other methods are more effort, or more expensive


▸ ML is easy and cheap

43Rasmus Ischebeck
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