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Overview

 1. ML application at the LHC 
• Instrumentation faults detection 
• Magnets sorting 
• Local optics corrections 
• Denoising and reconstruction of optics observables  
• Detection of coping sources 

2. ML applied to Muon Collider design studies:  
• Automatic optimisation of Final Cooling system 
• Speeding up simulations using supervised learning 

    3. General Considerations and Conclusions 
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Teaching machines to learn from experience

What is “Learning”?

• Traditional programming • Machine Learning approach

Data

Program
Output 

Data
ProgramOutput 

learn from data automaticallycreating manually a set of 
commands and rules



Accelerators 
• Operation 
• Diagnostics 
• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

Why applying ML to accelerators?

➢ large amount of optimization targets 
➢ computationally expensive simulations 
➢ direct measurements are not possible 
➢ previously unobserved behaviour 
➢ non-linear interacting sub-systems, rapidly changing environment. 



Accelerators 
• Operation 
• Diagnostics 
• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

➢ large amount of optimization targets 
➢ computationally expensive simulations 
➢ direct measurements are not possible 
➢ previously unobserved behaviour 
➢ non-linear interacting sub-systems, rapidly changing environment. 

Machine Learning: 
✓ Learn arbitrary models 
✓ Directly from provided data

Why applying ML to accelerators?



 
ML for LHC: Unsupervised Learning
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How faulty BPMs affect the optics measurements?

What are the limitations of traditional techniques? 

Turn-by-turn beam position
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• Excite the beam to perform transverse 
oscillations. 

! Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn

• Harmonic analysis using  
Fast Fourier Transform (FFT)

Denoising (SVD) 
Signal cuts

Semi-automatic and 
manual cleaning of 

outliers
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How faulty BPMs affect the optics measurements?
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Signal cuts

Semi-automatic and 
manual cleaning of 

outliers

Optics

Unphysical values still 
can be observed 

• Compute beta-beating 
and other optics functions

/ 
Δ
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• Harmonic analysis using  
Fast Fourier Transform (FFT)

• Excite the beam to perform transverse 
oscillations. 

! Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn
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How faulty BPMs affect the optics measurements?

What are the limitations of traditional techniques? 

Local outliers while global beta-
beating is expected to be uniform

Causes a spike,  
obviously, a bad BPM

Causes a spike, but how to detect 
before computing the optics?

Δψ(s) Δψ(s)

/ 
Δ

𝛽
𝛽
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Problem: Faulty BPMs are a-priori unknown:  
—> cause erroneous computation of optics functions 
—> manual cleaning is required 
—> repeating optics analysis after manual cleaning 
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Detection of faulty Beam Position Monitors 

Instrumentation faults detection
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Detection of faulty Beam Position Monitors 

Instrumentation faults detection

Harmonic analysis of all BPMs Detection of faulty signal  
prior to optics computation

• Outlier detection based on  
combination of several signal properties 

• Immediate results

Avoid the appearance of 
erroneous optics computation

Problem: Faulty BPMs are a-priori unknown:  
—> cause erroneous computation of optics functions 
—> manual cleaning is required 
—> repeating optics analysis after manual cleaning 

Anomaly detection  
using Unsupervised Learning 
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Instrumentation faults detection

Isolation Forest Algorithm

• Forest consists of several decision trees 

• Random splits aiming to “isolate” each point 

• The less splits are needed, the more “anomalous” 

• Contamination factor: fraction of anomalies to be 
expected in the given data 

 
Conceptual illustration of Isolation Forest algorithm

Tuning of IF-algorithm: 
! Trade-off between eliminating bad BPMs and removing 

good BPMs as side effect by setting the expected 
contamination rate 

! Optimising in combination with other available cleaning 
tools (SVD), finding new thresholds
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Operational results at the LHC

Instrumentation faults detection

✓ Fully integrated into optics measurements at LHC 
✓ Successfully used in operation under different optics settings.

• Instant faults detection instead of offline diagnostics. 

• Full optics analysis is possible directly during dedicated measurements 
session instead of iterative procedure of cleaning and analysis.

“Detection of faulty beam position monitors using unsupervised learning”, Phys. Rev. Accel. Beams 23, 102805.
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Are the BPMs really faulty?

Instrumentation faults detection

Reduction of non-physical outliers in beta-beating: 
Averaged cleaning results, optics measurements in 2018.

Observed outliers
IF-identified bad BPMs

• Collecting cleaning results  from different years of LHC operation 

• Fault types based on pre-defined thresholds  
and Isolation Forest input features 

• Extensive analysis and tests done by BI experts 
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Beam Instrumentation checks

Instrumentation faults detection
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Beam Instrumentation checks

Instrumentation faults detection
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Beam Instrumentation checks

Instrumentation faults detection

50% of BPMs reported as faulty by cleaning algorithm are actually “broken” 
Verifying false positive BPMs: keeping them in the data does not cause 
outliers in optics functions, removed as trade-off for detecting actual faults.

Thanks to ML: Detection of otherwise unexplored hardware and electronics problems in BPMs
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Alternative approach: Autoencoder NN 

Instrumentation faults detection

• Autoencoder can be trained to reproduce the input data in the output layer 

Anomaly detection: 
1. Training on “clean” data 
2. Verify that cleaned signal can be reconstructed with desired low prediction error 
3. Reconstruct anomalous signal:  prediction error will be higher 
—> Need to define a threshold for prediction error  to define anomalies 

Turn-by-turn beam 
position measurement

Reconstructed 
Turn-by-turn beam 

position measurement

Difference is low for good signal 
                      high for faulty signalIn collaboration with University di Napoli Federico II, A. Apicella, A. Gilardi



Promising results from preliminary studies: 

Simulated data for training and test 
Different NN architectures: feed-forward, CNN 
(with CNN giving accurate reconstruction even 
for faulty BPMs) 

19Instrumentation faults detection

In collaboration with University di Napoli Federico II, A. Apicella, A. Gilardi

Advantages compared to existing cleaning tools for the LHC optics measurements: 

• Cleaning of different signal artefacts can be done in one step 
• Applied directly on raw turn-by-turn data 
• Noise reduction can be done at the same time (dimensionality reduction in hidden layers)

Alternative approach: Autoencoder NN 

Note: important to identify as many true faults as 
possible, on the cost of some false faults 
Find optimal threshold for prediction error by analysing 
ROC-curves 
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Faulty BPMs detection: summary

Instrumentation faults detection

Important considerations:  
- Unsupervised Learning in this context still requires data (historical, simulations) to verify the method and 

to tune the algorithm 
- Decision trees as good alternative to NN: easier to interpret 

Next steps:  
- Applying Isolation Forest in LHC commissioning after fixes provided by BI experts and updating cleaning 

thresholds  
- Comparison of Autoencoder applied to raw tbt-data vs. current cleaning procedure  
Open questions:  
- Possibility to extract fault patterns from the reduced data representation in hidden layers of Autoencoder 

Instrumentation faults !  Unreliable optics measurements 
                        Detection of faults on early stages of signal processing for optics analysis
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UNSUPERVISED LEARNING TECHNIQUES FOR TUNE CLEANING MEASUREMENT, H. GARCIA-MORALES, E.FOL, R. 
TOMAS,IPAC’21 doi:10.18429/JACoW-IPAC2021-MOPAB184 

Online tune measurements from LHC BBQ —> used for optics analysis, e.g. K-modulation 
Problem: outliers due to wrong data acquisition 

Tune uncertainty —> imprecise measurements of derived quantities 
Manual fitting and cleaning of outlier measurements 

➡  Unsupervised Learning to automatically detect outliers in tune measurements  

Approach: 
- treating tune measurements as time series: how to deal with the changes in working point? 
➡Qx,Qy- space 
➡Clustering to distinguish noise from signal and classify different working points segments 

More Unsupervised Learning: Betatron tune measurement



22Instrumentation faults detection

Clustering algorithms: k-means, DBSCAN, Local outlier factor, Isolation forest, …. 
How to choose the most appropriate one? 
—> Number of parameters to tune, ability to deal with noise? 

DBSCAN vs. Isolation Forest 

Betatron tune measurement

• Both algorithms correctly identify 
the outliers 

• DBSCAN can automatically detect 
the clusters corresponding to 
different working points  
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Clustering algorithm for magnet sorting in HE-LHCClustering algorithm for magnet sorting
� Twin aperture dipoles in (HE-)LHC

� Only the average over a sector is corrected
� A priori, magnet field errors 

between apertures not correlated 

� Grouping dipoles with similar error in one aperture 
may spoil other aperture

� Use of clustering to optimize on both apertures
� Additional constraint: Same size clusters

� Use of modified K-means clustering algorithm
� Groups dipoles with similar error in both apertures

together
� Shown to increase dynamic aperture
� Option to include more components

IPAC19 MOPMP023



Supervised Learning  
for Optics Measurements and Corrections
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Correcting the optics

Supervised Learning based Optics corrections

➢ What are the actual errors of individual quadrupoles? 
➢ How to obtain the full set of errors in one step?

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

 Before After

/ 
Δ

𝛽
𝛽

• Corrections are implemented by 
changing the strength of circuits  

• Optics perturbations are caused by  
all individual magnets.
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Estimation of quadrupole errors

Supervised Learning based Optics corrections
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Estimation of quadrupole errors

Training ML- regression model: 
• 1256 target variables: randomly assigned field errors in 

quadrupoles + other error sources (dipole errors, 
sextupoles misalignments) 

• 3304 input variables: optics functions (phase advances, 
β-function in IRs, normalised horizontal dispersion) 

• Using Ridge Linear Regression as baseline model 

min
𝑤

𝑋𝑤 − 𝑦
2

2
+ 𝛼 𝑤 2

2

Supervised Learning based Optics corrections
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Simulations: true magnet errors are known 
! directly compare prediction to simulated data ! residual error 

Verifying ML approach: simulations

Supervised Learning based Optics corrections

How well can we correct the optics with predicted errors? 
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Estimation of quadrupole errors: measurements

Supervised Learning based Optics corrections

Difference?

Measurement

Simulation

Measurements: true magnet errors are unknown 
! Control beta-beating

predicted errors 
applied to simulate the optics 
 



30

Test on LHC optics measurements, uncorrected machine

Estimation of quadrupole errors: measurements

Supervised Learning based Optics corrections

Difference?

Measurement

Simulation

Measurements: true magnet errors are unknown 
! Control beta-beating

predicted errors 
applied to simulate the optics 
 

Reproducing the measured  
β –beating with average rms error 

of 7% and below 3% at IPs.

✓ New method for local optics corrections 
✓ Improved knowledge of direct error sources 
✓ Simultaneously obtaining quadrupole errors for 

both beams,  at every location. 

“Supervised learning-based reconstruction of magnet errors in circular accelerators”, 
European Physical Journal Plus volume 136, Article number: 365 (2021) ,



Denoising of optics measurements

31



Denoising of optics measurements

• Uncertainties in the measured optics functions ! “noise”   ! 

Simulated optics observables  
+ noise

Denoised optics

Autoencoder Neural Network

Noise in the measurements degrades the 
performance of corrections techniques

Supervised Learning based Optics corrections
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✓ Reconstruction error is by factor 2 smaller 
than the noise present in the signal.

Simulated data: Noise Reduction Simulated data: Reconstruction 

✓ Reliable reconstruction after denoising

Denoising of optics measurements

➢ Potential improvement of measurements quality 
➢ Possibility to reconstruct the phase advance at the location of faulty BPMs.

Supervised Learning based Optics corrections



Reconstruction of advanced optics observables

34
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Reconstruction of 𝛃-beating in Interaction Regions 
➢ Special technique to measure beta-function at IP is needed: 

➢ How to reconstruct optics observables without direct measurements?

• Modulation of quadrupole gradient 
• Computation of average beta-function 
• Propogate beta-function values to IP

Supervised Learning based Optics corrections
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Reconstruction of 𝛃-beating in Interaction Regions 

Supervised Learning based Optics corrections

Reconstruction error:   1%  

✓  comparable to measurement uncertainty of  
traditional method.

𝜷𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 − 𝜷𝒓𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅

𝜷_𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅
  =

Simulations LHC Measurements, BPMs left and right from Interaction Points

✓ Great potential to reduce measurements time 
✓ Applicable to estimation of other optics 

observables (e.g. horizontal dispersion)
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Reconstruction of horizontal dispersion

Supervised Learning based Optics corrections

Simulation example: Beam 1 

BPM index

• Input: simulated phase advance deviations given noise 

• Output: normalized dispersion  

• Using linear regression model: Ridge Regression, 10 000 samples  
∆ 𝐷x /√𝛽x

Simulated rms  : 0.0802  

RMS-error between simulation and reconstruction: 0.007 

∆ 𝑫x/√𝜷x 𝒎

𝒎
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Supervised Learning approach for optics corrections

Supervised Learning based Optics corrections

Important considerations:  
• Data is everything: realistic simulations —> sufficiently general models 
• Systematic data collection and management (e.g. expert systems?)

Providing simulation data to find a general mapping between error sources and optics observables 
! Simulation studies on the effects of different error sources 
! One data set can be used to build several models / applications (quad errors prediction, optics 
reconstruction, measurements denoising)



Continuing the Supervised Learning path

39
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Betatron Coupling Sources Prediction

Detecting betatron coupling sources

• Knowledge of sources is very valuable for correction. 
• Resonance Driving Terms: obtained from harmonic analysis of tbt-data 
• A coupling source (e.g. tilt of a quadrupole) will create an abrupt jump on the coupling RDTs 

—> indicate the location of coupling sources 
• Challenge in Interaction Regions: unfavourable phase advance and “lack” of BPMs —> how 

to link observed RDTs to a specific coupling source? 

 Working on an ML model that would be able to accurately predict the location and 
relative strength of coupling sources.  
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Betatron Coupling Sources Prediction

Detecting betatron coupling sources

✓ Current simple model (Linear regression with 
regularisation) already demonstrates relatively accurate 
predictions.

Nominal 
model

Quads tilt 

Simulating 
1000 of lattices

Perturbed 
optics

ML-model 
input

ML-model 
output

Input: RDTs simulated/measured  
for beam 1 and beam 2 
Output: Misalignment of quadrupoles in all IRs

Work by Felix Soubelet,  BE-OP
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Betatron Coupling Sources Prediction

Detecting betatron coupling sources

• Noise in the measurements degrades the model performance  
—> determine requirements on instrumentation/ analysis for the acceptable level of noise 

• Current work: 

- Denoising of reconstructed RDTs  

- Higher complexity of prediction models (Decision trees, NN)
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Optics control in HL-LHC studies
High Luminosity Large Hadron Collider: Upgrade of the LHC to push the performance in terms of beam 
size and luminosity. 
•The local linear optics correction at the IR will be essential to ensure the HL performance.  
•Current LHC strategies might impose limitations ! new correction strategies are needed. 
Preliminary results obtained with simplified dataset  

(no noise added to input features):

Full set of quadrupoles 
all around the ring

Inner Triplet magnets in 
Interaction Regions

Work by Hector Garcia Morales, BE-ABP

• Systematic part of the gradient error (unknown) may 
have a significant impact on the β-beating. 

Supervised Learning based corrections for HL-LHC
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Optics control in HL-LHC studies
Reinforcement learning - based local corrections 
- Uses the previously presented approach to learn LHC model from simulated data 

• Environment =  Surrogate model of HL-LHC lattice 
• Reward = Average beta-beating in IRs 
• State space =  Quadrupole strengths (only triplet magnets for now) 
• Action space =  Correctors settings

Based on V.Kain et al., ”Sample-efficient RL for 
CERN accelerator control”

Reinforcement Learning based corrections for HL-LHC



45

Optics control in HL-LHC studies
Implementation 
- Introducing magnetic errors in triplet magnets in IR1 
- RL algorithms implementations based on OpenAI 
- PyTorch for the training of critic networks 

Results:  
After the learning process, the model is able to perform the 

optics correction in one single iteration with residual β-beating 
of 1-2% (up to 20% initially ) 

Open questions: 
- Understanding the model behaviour  
- Comparison with other correction techniques 
- Extending the problem by adding more error sources 

Reinforcement Learning based corrections for HL-LHC

Work by Hector Garcia Morales, BE-ABP



Muon collider design studies: Final Cooling 
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• Proton driven scheme: muons are produced by p+-target interaction 
• Muon beam is produced with a large transversal momentum   

—> cooling is required 
• Short lifetime of muons —> ionization cooling 

• Beams with transversal emittance trans  of 0.3 mm are provided after the 6D cooling 𝜖

[1] U.S. Muon Accelerator Program, FERMILAB-CONF-13-307-APC 

• Final cooling: trans = 0.05 mm has been achieved by H. K. Sayed (10.1103/PhysRevSTAB.18.091001 ) 

• trans =  0.025 mm is expected to be required before acceleration. 
𝜖

𝜖

https://muoncollider.web.cern.ch/
design/general-parameters

Challenges of Final Cooling for the Muon Collider
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David Neuffer, „Principles and 
applications of muon cooling“

• Transverse Cooling: 

 

• Minimum Emittance: 

 

 L radiation length, E muon energy, β┴  transverse β-function, = energy loss  

• Final cooling: high field solenoidal channel (up to ~30 T) placing absorber inside (e.g. liquid hydrogen). 
• Challenge: strong focusing to get low emittance —> higher fields and lower momenta 

     - cause more longitudinal emittance growth, energy spread 
• Control the optics in absorber regions, minimise energy spread and reduce the transverse emittance

𝑑𝐸
𝑑𝑠

Energy loss 
term

Multiple 
scattering term

To minimize the heating 
effect, the absorbers are 

placed in a strong focusing 
field.

Final Cooling concept
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• A Gaussian input beam with ε┴=300 μm and ε║ = 1.5mm 
• For final cooling, the beam momentum is reduced initially to 135 MeV/c  

• High-field magnets limited to 25—32 T, and the cooling beam momenta ranged from 135 MeV/
c to 70 MeV/c (40 to 20 MeV kinetic energy) 

• Cooled to ε┴ = 55 μ and ε║ = 1.5 mm, with a transmission of 50% 

High field – low energy muon ionization cooling channel 
Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer 
Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015

Final Cooling baseline
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◆ Python “wrapper” for launching ICOOL, providing pz, ε┴,start, B-field (coils parameters), absorber settings 

✓ automatic computation of initial beam distribution, generation of ICOOL code 
✓ Additional analysis in Python 
✓ Storing input and output of simulation in well-structured format (JSON) 

First steps towards applying ML

✓ Simplified optimization set-up 

✓ Easy integration of optimization methods 

✓ Applied to linear optics optimization and emittance reduction.



Applied optimizations methods:  
▪ Nelder-Mead: Simplex algorithm, robust in many applications, but doesn’t allow multiprocessing 

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead 
▪ Differential Evolution: stochastic population-based method, allows parallelization 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html 
▪ Extremum Seeking: performs small oscillations in parameter space to find global solution 
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Vary parameters of the field ! tracking ! compute the optics 
 
 ! evaluate the objective function ! adjust fields/absorbers

Ecalc9 (Fortran) 
PythonICOOLPython

Python Python

A. Scheinker and D. Scheinker, “Constrained extremum seeking stabilization of systems not affine in 
control,” International Journal of Robust and Nonlinear Control 28, 568–581 (2018)

Building a framework for automatic optimisation

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html


Optimizing coils radius 
using Extremum seeking 

algorithm

- each cell containing of 3 coils x 4 
sheets, absorber density, initial 
momentum and beta- function  

➡ Extremum seeking algorithm: much 
faster for a larger parameter spaces, 
easily extendable 

Developed matching routine produces acceptable results starting from 
(random) initial guess

First results: simplified lattice
Note: simplified lattice, no re-acceleration



Optimizing coils radius 
using Extremum seeking 

algorithm

- each cell containing of 3 coils x 4 
sheets, absorber density, initial 
momentum and beta- function  

➡ Extremum seeking algorithm: much 
faster for a larger parameter spaces, 
easily extendable 

Developed matching routine produces acceptable results starting from 
(random) initial guess 

๏ Tracking of thousands of particles at every optimization step 
๏ Increasing the complexity of the lattice —> more optimisation steps 

First results: simplified lattice
Note: simplified lattice, no re-acceleration



Speeding up simulations with Supervised Learning
➡Making use of simulations done during optimisation

1. Speeding up optimization: 2. “Inverse” design:

✓ First results demonstrating orders of magnitude optimization speed up  
✓ Accurate prediction of initial parameters to achieve desired cooling performance

Earlier example: A. Edelen et al. „Machine learning for orders of 
magnitude speedup in multiobjective optimization of particle 
accelerator systems“ , Phys. Rev. Accel. Beams 23, 044601, 2020



Parameter scans vs. Storing data from optimization
➡Making use of simulations done during optimisation

➡ Easier to find the boundaries 
➡Warm start for more complex problems



Using Random Forest (decision trees-based) algorithm

Model performance: train/test - 0.99/0.98

✓ Compute optimization function from ML-model prediction 
✓ Optimization in a few minutes instead of ~1.5 hours for 200 steps using simulations

➡ Applied to more complex model which includes RF-optimization and energy spread/ longitudinal emittance control

Combining Surrogate Models and Extremum Seeking



Using Random Forest (decision trees-based) algorithm —> Feature Importance Analysis

… obvious to an (experienced) physicist 
—> Big achievement for a decision tree 
✓ “what is this model actually learning?”

Impact on cooling performance



Using Random Forest (decision trees-based) algorithm —> Feature Importance Analysis

… obvious to an (experienced) physicist 
—> Big achievement for a decision tree 
✓ “what is this model actually learning?”

Impact on cooling performance

Overcoming ML “complexity”: 
- Start optimization with very simple models 
➡ Easy to control free parameters and verify results 
- Build more complex non-analytical models



Inverted models: warm start or final solution?

• Estimate the initial parameters to achieve a desired cooling performance 

Input: Emittance reduction, momentum reduction, transmission  
Output: required start energy, beta, absorber densities in 2 consecutive cells 

Example:  aiming for Δϵ=50%, Δpz = 60%,  Δ N=90%,  

predicted values are: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1 

 
 



Inverted models: warm start or final solution?

• Estimate the initial parameters to achieve a desired cooling performance 

Input: Emittance reduction, momentum reduction, transmission  
Output: required start energy, beta, absorber densities in 2 consecutive cells 

Example:  aiming for Δϵ=50%, Δpz = 60%,  Δ N=90%,  

predicted values are: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1 

Verification by running ICOOL with predicted parameters: Δϵ=0.493%, Δpz = 0.61%,  Δ N=0.98%  

 



Outlook and Summary
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Optimization and 
operation 

automation

Virtual 
Diagnostics

Beam control  
and lattice 

imperfection 
corrections

Detection of 
instrumentation 

failures

➢ Defining a narrow task (optimization of 
specific parameters rather than the entire 
machine) 

➢ Performance measure of selected model 
(beam size, pulse energy, …) 

➢ e.g. when no analytical solution is 
available, rapidly changing systems,  
no direct measurements are possible.

Summary: Where can we use ML in accelerators?

Important to identify where ML can surpass traditional methods 
How much effort is needed to implement a ML solution? Is appropriate infrastructure for data 

acquisition available? Enough resources to perform the training?



63Summary

Achieved Results
✓ ML-based toolbox for optics control: 

• Detection of instrumentation faults ! no manual cleaning and repeated optics analysis 
• Estimation of individual magnet errors ! Better knowledge and control of individual optics errors 
• Denoising of optics measurements ! Increasing the quality of the measurements 
• Reconstruction of optics observables   ! Additional observables without dedicated measurements 



64Summary

✓ ML-based toolbox for optics control: 
• Detection of instrumentation faults ! no manual cleaning and repeated optics analysis 
• Estimation of individual magnet errors ! Better knowledge and control of individual optics errors 
• Denoising of optics measurements ! Increasing the quality of the measurements 
• Reconstruction of optics observables   ! Additional observables without dedicated measurements 

Achieved Results

Outlook

✓ Paving the way for new studies currently being in progress:  
 - Optics corrections for High Luminosity – LHC upgrade:  

- local correction 
- exploring Reinforcement Learning for determining correctors settings. 

 - Exploring more complex optics error sources: coupling corrections 
 - Optimizing the design of future colliders.
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• Machine learning for beam dynamics studies at the CERN Large Hadron Collider  
https://doi.org/10.1016/j.nima.2020.164652

• Opportunities in Machine Learning for Particle Accelerators 
https://arxiv.org/abs/1811.03172

• Optimization and Machine Learning for Accelerators (USPAS course) 
https://slaclab.github.io/USPAS_ML/

Further References

https://doi.org/10.1016/j.nima.2020.164652
https://arxiv.org/abs/1811.03172


Thank you for your attention!  

66

Cat!
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ML in accelerators: summary
Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, 
SVR, Logistic Regression, NN

Saving operation time, reducing 
human intervention, preventing 

subjective decisions

Dedicated machine time usually 
required to collect training data 

and to fine tune developed 
methods.

• Online optimization of 
several targets which are 
coupled 

• Unexpected drifts, 
continuous settings 
readjustment needed to 
maintain beam quality

 
Reinforcement Learning, 
Bayesian optimization, 

Gaussian Process, 
Adaptive Feedback

Simultaneous optimization 
targeting several beam 

properties, automatically 
finding trade-off between 

optimization targets, allows 
faster tuning offering more user 

time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: 
clustering, ensembles of 

decision trees (e.g. Isolation 
Forest), supervised 

classification, Recurrent NN for 
time-series data.

Preventing faults before they 
appear, no need to define rules/ 

thresholds, 
no training is needed and can 

be directly applied on received 
data

In unsupervised methods, 
usually no “ground truth” is 

available ! methods can be 
verified on simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, slow 
simulations 

• Reconstruct unknown 
properties from 
measurements

 
Supervised Regression models, 

NN for non-linear problems

Learning underlying physics directly 
from the data, faster execution

100% realistic simulations 
are not possible ! the 

model performance will be 
as good as your data is.

• Reduction of parameter 
space e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier to 

interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information 
should not be removed from 

the signal.
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Supervised Learning

Training input 
data

Function with adjustable  
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss  
(approximation error ): 

e.g. Mean Squared Errorexample 1 
example 2 
example 3 
. 
. 
.

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)

Adjust parametersMinimizing the loss
e.g. Gradient Descent

What is “Learning”?

➢ Generalized model explaining relationship between input and 
output variables in all training samples.
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Training and generalization: no perfect model needed!

Simple models underfit 
• Derivate from data (high bias) 
• Do not correspond to data structure 

(low variance)

Complex models overfit 
• Very low systematical deviation (low bias) 
• Very sensitive to data (high variance) 

We don‘t want „look up tables“ 
We don‘t want unreliable prediction 

!  Bias-Variance tradeoff
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Regression Models
• Linear model for input X / output Y pairs, i – number of pairs (training samples):  

•
Squared Loss function for model optimization:  

• Find new weights minimizing the Loss function:  

! Update weights for each incoming input/output pair. 

𝒇(𝑿, 𝒘) = 𝒘𝑻 𝑿

𝑳(𝒘) =
𝟏
𝟐 ∑

𝒊
(𝒀𝒊 − 𝒇(𝑿𝒊; 𝒘))

𝟐

𝒘∗ = 𝐚𝐫𝐠𝒎𝒊𝒏𝒘𝑳(𝒘)

! Regularization places constraints on the model 
parameters (weights) 

- Trading some bias to reduce model variance. 

- Using L2-norm: , adding the 

constraint to the weights update rule 
- The larger the value of , the stronger the shrinkage 

and thus the coefficients become more robust.

𝜴(𝒘) = ∑
𝒊

𝒘𝟐
𝒊

𝜶𝜴(𝒘) 
𝜶

Too much “flexibility” in weights update can lead to overfitting
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Relevant ML concepts and definitions
Supervised Learning

Unsupervised Learning

• Input/output pairs available 
• Learn a mapping function, 

generalizing for all provided data 
• Predict from unseen data 

• Only input data is given 
• Discover structures and patterns 

What is “Learning”?

Regression

Classification Clustering



Beam optics control at the LHC

Why and how is the beam optics controlled in the LHC? 

Large Hadron Collider: 
• 9300 magnets for bending and focusing the beam. 
• Main experiments: ALICE, ATLAS, CMS, LHCb  
• Collision rate: sufficient and balanced between experiments ! Luminosity 

➢ How to increase chances of collisions? 
➢ How to ensure machine protection? 
! Beam Optics control
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IF in the LHC operation: detecting unknown failures
• Some artifacts in the signal are known to be related to BPM failures (manual cleaning would time 

consuming, but potentially possible). 
• How to deal with unknown failure modes?

First observed in: “Analysis of tune 
modulations in the LHC”, D.W. Wolf 
Related to BPM failure: L. Malina, 
“Noise and stabilities”, https://
indico.cern.ch/event/859128/

Since IF is based on the structures in given data 
➢ Ability to identify previously unknown failures

Several BPMs with unusual pattern in the 
spectra indicating a new failure mode



75

Isolation Forest Algorithm
• Forest consists of several decision trees 

• Random splits aiming to “isolate” each point 

• The less splits are needed, the more “anomalous” 

• Contamination factor: fraction of anomalies to be 
expected in the given data 

! First obtained empirically from the past 
measurements 

  ! Refined on simulations introducing  
  expected BPM faults. 
 

Conceptual illustration of Isolation Forest algorithm

• Input data: combination of several signal 
properties obtained from harmonic analysis of 
BPM turn-by-turn measurements 

 ! No additional data handling needed.


