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Overview

1. ML application at the LHC
e Instrumentation faults detection
e Magnets sorting
e Local optics corrections
e Denoising and reconstruction of optics observables
e Detection of coping sources

2. ML applied to Muon Collider design studies:
e Automatic optimisation of Final Cooling system
e Speeding up simulations using supervised learning

3. General Considerations and Conclusions




Teaching machines to learn from experience

 Traditional programming e Machine Learning approach
DEIC Y Data e
===p Output === Program
Program mmp OULPUL p» Prog
creating manually a set of learn from data automatically

commands and rules

What is “Learning”?



Why applying ML to accelerators?

Accelerators

. Operation
. Diagnostics
e Beam Dynamics Modeling

Which limitations can be solved by ML
with reasonable effort?

> large amount of optimization targets

> computationally expensive simulations

> direct measurements are not possible

> previously unobserved behaviour

> non-linear interacting sub-systems, rapidly changing environment.




Why applying ML to accelerators?

Accelerators

. Operation
. Diagnostics
e Beam Dynamics Modeling
Which limitations can be solved by ML Machine Learning:

|:> v Learn arbitrary models

. ?
with reasonable effort: v Directly from provided data

> large amount of optimization targets
> computationally expensive simulations
> direct measurements are not possible
> previously unobserved behaviour

> non-linear interacting sub-systems, rapidly changing environment.




ML for LHC: Unsupervised Learning




How faulty BPMs affect the optics measurements?

Turn-by-turn beam position Spectrum
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e Excite the beam to perform transverse « Harmonic analysis using
oscillations. Fast Fourier Transform (FFT)

—> Beam Position Monitors (BPMs) to
measure the beam centroid turn-by-turn

Semi-automatic and

Denoising (SVD) manual cleaning of
Signal cuts outliers

What are the limitations of traditional techniques?




How faulty BPMs affect the optics measurements?

Turn-by-turn beam position Spectrum Optics
B S Eg = Tegend—]
g 05 v @
< v <
.g -0.5- T_J.
= 2
o 1
o -1.5- <
Turn no. Frequency
* Excite the beam to perform transverse « Harmonic analysis using « Compute beta-beating
oscillations. Fast Fourier Transform (FFT) and other optics functions

—> Beam Position Monitors (BPMs) to
measure the beam centroid turn-by-turn

ST G e Unphysical values still

Denoising (SVD i
el (SVD) manual clfeanmg of can be observed
Signal cuts outliers

What are the limitations of traditional techniques?




How faulty BPMs affect the optics measurements?
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Detection of faulty Beam Position Monitors

Problem: Faulty BPMs are a-priori unknown:
—> cause erroneous computation of optics functions
—> manual cleaning is required
—> repeating optics analysis after manual cleaning

Instrumentation faults detection




Detection of faulty Beam Position Monitors

Problem: Faulty BPMs are a-priori unknown:
—> cause erroneous computation of optics functions =
—> manual cleaning is required
—> repeating optics analysis after manual cleaning

Anomaly detection
using Unsupervised Learning

Avoid the appearance of
> | erroneous optics computation

O good

Detection of faulty signal A faulty
prior to optics computation

Harmonic analysis of all BPMs
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e Immediate results

Instrumentation faults detection




Isolation Forest Algorithm

. Forest consists of several decision trees

. Random splits aiming to “isolate” each point

. The less splits are needed, the more “anomalous”
. Contamination factor: fraction of anomalies to be

expected in the given data

Tuning of IF-algorithm:
- Trade-off between eliminating bad BPMs and removing

good BPMs as side effect by setting the expected

contamination rate
- Optimising in combination with other available cleaning

tools (SVD), finding new thresholds

Instrumentation faults detection
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Operational results at the LHC
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e Instant faults detection instead of offline diagnostics.

e Full optics analysis is possible directly during dedicated measurements
session instead of iterative procedure of cleaning and analysis.

v Fully integrated into optics measurements at LHC
v Successfully used in operation under different optics settings.

“Detection of faulty beam position monitors using unsupervised learning”, Phys. Rev. Accel. Beams 23, 102805.

Instrumentation faults detection




Are the BPMs really faulty?

o Collecting cleaning results from different years of LHC operation

o Fault types based on pre-defined thresholds

and Isolation Forest in D ut features Reduction of non-physical outliers in beta-beating:

Averaged cleaning results, optics measurements in 2018.

I Bad BPMs removed by SVD
E Observed outliers
I |[F-identified bad BPMs

w
o

« Extensive analysis and tests done by Bl experts

N
o

Number of BPMs
S

Instrumentation faults detection




Beam Instrumentation checks
BPMSW.1L5.B2

TbT position for BPMSW.1L5.B2 (file Beam2@Turn@2021_10 22@10 52_21_460.sdds)
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Beam Instrumentation checks

Executive summary of Bl analysis

= Out of the 132 BPM flagged by ABP as suspicious
= 62 BPMs - look fine to BI (including critical BPMS.2L1.B1)

= 29 BPMs - “exact zero” problem, investigBations ongoing, beam
measurements needed (including crical BPMSW.1L1.B2 and
BPMSW.1R5.B2)

= 27 BPMs - memor Ifroblems, will be solved for Run 3 (including
critical BPMSW.1L5.B2)

6 BPMs - phased incorrectly (only zeros), will be rephased in Run 3
= 5 BPMs - disconnected from electronics, already fixed

2 BPMs - a huge offset (~50 mm) normal due to installation on the
dump lines

Instrumentation faults detection




Beam Instrumentation checks

Executive summary of Bl analysis

= Out of the 132 BPM flagged by ABP as suspicious
= 62 BPMs - look fine to BI (including critical BPMS.2L1.B1)

= 29 BPMs - “exact zero” problem, investigBations ongoing, beam
measurements needed (including crical BPMSW.1L1.B2 and
BPMSW.1R5.B2)

= 27 BPMs - memor groblems, will be solved for Run 3 (including
critical BPMSW.1L5.B2)

= 6 BPMs - phased incorrectly (only zeros), will be rephased in Run 3
= 5 BPMs - disconnected from electronics, already fixed

2 BPMs - a huge offset (~50 mm) normal due to installation on the
dump lines

Thanks to ML: —} Detection of otherwise unexplored hardware and electronics problems in BPMs

o 50% of BPMs reported as faulty by cleaning algorithm are actually “broken”
o Verifying false positive BPMs: keeping them in the data does not cause
outliers in optics functions, removed as trade-off for detecting actual faults.

Instrumentation faults detection




Alternative approach: Autoencoder NN

« Autoencoder can be trained to reproduce the input data in the output layer

Anomaly detection:
1. Training on “clean” data
2. Verify that cleaned signal can be reconstructed with desired low prediction error
3. Reconstruct anomalous signal: prediction error will be higher
—> Need to define a threshold for prediction error to define anomalies

Turn-by-turn beam Turn-by-turn beam
position measurement hidden 8 position measurement
‘\encode VY

Difference is low for good signal
high for faulty signal

Reconstructed

o

In collaboration with University di Napoli Federico I, A. Apicella, A. Gilardi

Instrumentation faults detection




Alternative approach: Autoencoder NN

Advantages compared to existing cleaning tools for the LHC optics measurements:

e Cleaning of different signal artefacts can be done in one step
e Applied directly on raw turn-by-turn data

e Noise reduction can be done at the same time (dimensionality reduction in hidden layers)

2
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In collaboration with University di Napoli Federico I, A. Apicella, A. Gilardi
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Faulty BPMs detection: summary

Instrumentation faults 2> QUnreIiabIe optics measurements
Detection of faults on early stages of signal processing for optics analysis

Important considerations:

- Unsupervised Learning in this context still requires data (historical, simulations) to verify the method and
to tune the algorithm

- Decision trees as good alternative to NN: easier to interpret

Next steps:

- Applying Isolation Forest in LHC commissioning after fixes provided by Bl experts and updating cleaning
thresholds

- Comparison of Autoencoder applied to raw tbt-data vs. current cleaning procedure

Open questions:
- Possibility to extract fault patterns from the reduced data representation in hidden layers of Autoencoder

Instrumentation faults detection




More Unsupervised Learning: Betatron tune measurement

Online tune measurements from LHC BBQ —> used for optics analysis, e.g. K-modulation
Problem: outliers due to wrong data acquisition

QTune uncertainty —> imprecise measurements of derived quantities

€3 Manual fitting and cleaning of outlier measurements
= Unsupervised Learning to automatically detect outliers in tune measurements

Approach:

- treating tune measurements as time series: how to deal with the changes in working point?
= Qx,Qy- space

= Clustering to distinguish noise from signal and classify different working points segments

UNSUPERVISED LEARNING TECHNIQUES FOR TUNE CLEANING MEASUREMENT, H. GARCIA-MORALES, E.FOL, R.
TOMAS,IPAC’21 doi:10.18429/JACoW-IPAC2021-MOPAB184

Instrumentation faults detection




Betatron tune measurement

Clustering algorithms: k-means, DBSCAN, Local outlier factor, Isolation forest, ....
How to choose the most appropriate one?
—> Number of parameters to tune, ability to deal with noise?

DBSCAN vs. Isolation Forest

DBSCAN: Estimated number of clusters: 3 0.335 IsolationForest
- = * Both algorithms correctly identify
0.330 e, 0.330 the outliers
* Cluster1 0.325 e DBSCAN can automatically detect
.. 0.3251 o Cluster2 .
S . S the clusters corresponding to
- 0.320 : : :
g2l Nere Q;;Q' different working points
e G ' 0.315
0.315 g '
. . . 0.310
0.308 - 0310 0312 0.306 0.308 0.310 0.312
X QX

Instrumentation faults detection




Clustering algorithm for magnet sorting in HE-LHC
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Supervised Learning
for Optics Measurements and Corrections




Correcting the optics

Errors c _ . b
Ak, Ak, Ak, ’ orrections are implemented by

v v v changing the strength of circuits

[ ] . Optics perturbations are caused by
Quad N . ge
all individual magnets.

Quad 1 ] [ Quad 2 ]

Schematic circuit representation

Power

Supply 008,

0.06/;

v 0.04f22 ° m:
QU 0.02%
=K o0.00}
Corrections D o0, ¥#R

—0.04
—0.06

> What are the actual errors of individual quadrupoles?
> How to obtain the full set of errors in one step?

Supervised Learning based Optics corrections




Estimation of quadrupole errors

Input
Optics _—
Measurement

Output

IR " f
LSS QLA e
SO RS, e—
e PO LS o e
e . e . -

Regression Model,
Supervised Learning

Supervised Learning based Optics corrections

Quadrupole Errors




Estimation of quadrupole errors

Ideal optics
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Supervised Learning based Optics corrections

Training ML- regression model:

e 1256 target variables: randomly assigned field errors in
guadrupoles + other error sources (dipole errors,
sextupoles misalignments)

e 3304 input variables: optics functions (phase advances,
B-function in IRs, normalised horizontal dispersion)

e Using Ridge Linear Regression as baseline model

. 2
mln”Xw — y” + allw||?
w 2 2




Verifying ML approach: simulations

Simulations: true magnet errors are known

- directly compare prediction to simulated data =

Q1 and Q3
— —— systematic error = 6% .
T 2 B . ..
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True [1074]
True
Predicted
40
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20
0 ~10 0 10

Magnet errors [107%]

Residual [10™4]
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—— systematic error = 2%
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True [1074]
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Supervised Learning based Optics corrections

residual error

(s
MAE(y,9) = Z i — il
1=1

How well can we correct the optics with predicted errors?




Estimation of quadrupole errors: measurements

Measurements: true magnet errors are unknown

- Control beta-beating

Measurement  mm)  ML-model

Difference?H l

predicted errors
Simulation 4= applied to simulate the optics

Supervised Learning based Optics corrections




Estimation of quadrupole errors: measurements

Measurements: true magnet errors are unknown
- Control beta-beating

Measurement  wm) = ML-model

Difference?H 1
predicted errors

Simulation 4=, 5jiad to simulate the optics

v New method for local optics corrections
v Improved knowledge of direct error sources
v Simultaneously obtaining quadrupole errors for

both beams, at every location.

“Supervised learning-based reconstruction of magnet errors in circular accelerators
European Physical Journal Plus volume 136, Article number: 365 (2021),

CE/RW Supervised Learning based Optics corrections
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Test on LHC optics measurements, uncorrected machine
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Denoising of optics measurements




Denoising of optics measurements

« Uncertainties in the measured optics functions > “noise” ->|Noise in the measurements degrades the
performance of corrections techniques

Autoencoder Neural Network
Simulated optics observables - - - :
+ noise | hidden , Denoised optics

/ -

output

encode decode

C
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- Reconstructed

Simulated data: Reconstruction

Simulated
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v Reliable reconstruction after denoising
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Reconstruction error, rms

Simulated data: Noise Reduction

Denoising of optics measurements

Agl2n]
> Possibility to reconstruct the phase advance at the location of faulty BPMs.

> Potential improvement of measurements quality

than the noise present in the signal.

v Reconstruction error is by factor 2 smaller
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Reconstruction of advanced optics observables




Reconstruction of 3-beating in Interaction Regions

> Special technique to measure beta-function at IP is needed:

e Modulation of quadrupole gradient
B * o ] « Computation of average beta-function
B y « Propogate beta-function values to IP
T\B— --------------- B
efocussing w | ocussing
Quad <_| Quad
-W L

> How to reconstruct optics observables without direct measurements?

Phase advance Input 257275 = Output
measurements* R Simultaneously for
Regression Model, B-function at IPs beam 1 and 2
* Always available from turn-by- Supervised Learning

turn data at one beam excitation

Supervised Learning based Optics corrections




Reconstruction of 3-beating in Interaction Regions

Simulations LHC Measurements, BPMs left and right from Interaction Points
A Simulated 1750 , Predicted
10 Reconstructed f —— Measured
; 1500 N [
Difference F l
" 103 1250 ) - \ !’\‘\
;E, 'S 1000
g 10? < 750
1o 500
250
L
100 o ,
ITIITIILT>S>>>>>>IIIILTIIILS>>>>>>>
-0 =2 0 25 50 75 1000 125 S EEEEEEEEEEEEEE R EEEEEEEEEEEEEEEE
AB/BL%] EFEFEFEEERE 45 o EFE

ﬁsimulated o ﬁreconstructed
B_simulated

v comparable to measurement uncertainty of
traditional method.

1% v Great potential to reduce measurements time
v Applicable to estimation of other optics
observables (e.g. horizontal dispersion)

Reconstruction error:

CE
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Reconstruction of horizontal dispersion

e Input: simulated phase advance deviations given noise
. Output: normalized dispersion A Dx/\/ﬂx

e Using linear regression model: Ridge Regression, 10 000 samples

Simulated rms A Dx/ \/ Px:0.0802+/ m

Simulation example: Beam 1 ] ) )
RMS-error between simulation and reconstruction: 0.007 \/ m

601 True
Predicted 0.2] | f f 'y ‘
>0; Difference I /) I W L
40/ E 0.1 1
30 <
@ 0.0 | / ‘ /) A
S~ \ ' ‘
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-0.14
101 — True
oL | . | —— Predicted
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AD,/v/ Bx[m] BPM index
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Supervised Learning approach for optics corrections

Providing simulation data to find a general mapping between error sources and optics observables
- Simulation studies on the effects of different error sources

- One data set can be used to build several models / applications (quad errors prediction, optics
reconstruction, measurements denoising)

Important considerations:
« Datais everything: realistic simulations —> sufficiently general models
« Systematic data collection and management (e.g. expert systems?)

C\E/RW Supervised Learning based Optics corrections
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Continuing the Supervised Learning path




Betatron Coupling Sources Prediction

Knowledge of sources is very valuable for correction.
Resonance Driving Terms: obtained from harmonic analysis of tbt-data

A coupling source (e.g. tilt of a quadrupole) will create an abrupt jump on the coupling RDTs
—> indicate the location of coupling sources

Challenge in Interaction Regions: unfavourable phase advance and “lack” of BPMs —> how
to link observed RDTs to a specific coupling source?

= Working on an ML model that would be able to accurately predict the location and
relative strength of coupling sources.

C\E/RW Detecting betatron coupling sources
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Betatron Coupling Sources Prediction

Work by Felix Soubelet, BE-OP

Perturbed i
optics

Nominal

model

ML-model

Simulating input

1000 of lattices

DPSI [10~ rad]

Quads tilt l

ML-model
output
Input: RDTs simulated/measured v  Current simple model (Linear regression with
for beam 1 and beam 2 regularisation) already demonstrates relatively accurate
Output: Misalignment of quadrupoles in all IRs predictions.

CE/RW Detecting betatron coupling sources
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Betatron Coupling Sources Prediction

- Noise in the measurements degrades the model performance
—> determine requirements on instrumentation/ analysis for the acceptable level of noise

0,5_— Arc BPMs Noise [rad] 0 9: Arc BPMs Noise [rad]
I O fiom = 1077 ’ i —— Ofin = 107
0 4__ O fion = 10°° 0 8' - O fiom = 10°°
" i O fion = 10-° ] - O fiomn = 107°
f-Tjr: _;ﬁ i ~ g i
=g 0.7
2[S 0.3f = U0
0.6}
0.2 I
0.5
e | L RN Ee | . el L el L el el L el i il L gl — el L Lol L el ot Ll L [N R
10—b 10—é) 10—4 10—6 10—2 10—1 10_6 107 10_4 10_3 10_2 10_1
IR O_IR
flOOl flOOl

«  Current work:
- Denoising of reconstructed RDTs

- Higher complexity of prediction models (Decision trees, NN)

\/RW Detecting betatron coupling sources




Optics control in HL-LHC studies

High Luminosity Large Hadron Collider: Upgrade of the LHC to push the performance in terms of beam
size and luminosity.

*The local linear optics correction at the IR will be essential to ensure the HL performance.

*Current LHC strategies might impose limitations = new correction strategies are needed.
Work by Hector Garcia Morales, BE-ABP

Preliminary results obtained with simplified dataset

q . —— prediction 4,- oLt J ’ . + ¢ Q2AL ||
(no noise added to input features): — real e o - Q2BL
O - Q2AR

- Q2BR ||
0.5 .

Error [107{-4}]

True - Predicted Error [1074]
fen}

Full set of quadrupoles ~ -1.0- B S Lo Inner Trip/_et magr_lets in
all around the ring —4} ’ D o ] Interaction Regions

0 200 400 600 800 1000 1200 =30 =20 —10 0 10 20 30
Magnet number True magnet errors [1074]

e Systematic part of the gradient error (unknown) may
have a significant impact on the B-beating.

Systematic Error [1074]

—— Predicted
—— True

(’) ) 10‘00 15‘00
Seed number

Supervised Learning based corrections for HL-LHC



Optics control in HL-LHC studies

Reinforcement learning - based local corrections
- Uses the previously presented approach to learn LHC model from simulated data

reward
> A I v

gent (- — (- w

- RL AGENT policy ENVIRONMENT

state | |reward action me(s,a)
S| | R 5 A Ll :{ CORRECTORS ]
t+1 (" . @
<= Environment

b [ BPMS ]

" _J S J
observation
e Environment = Surrogate model of HL-LHC lattice Based on V.Kain et al., "Sample-efficient RL for

CERN accelerator control”

Reward = Average beta-beating in IRs
e State space = Quadrupole strengths (only triplet magnets for now)
e Action space = Correctors settings

Reinforcement Learning based corrections for HL-LHC




Optics control in HL-LHC studies

Implementation

- Introducing magnetic errors in triplet magnets in IR1 Work by Hector Garcia Morales, BE-ABP
- RL algorithms implementations based on OpenAl . 5
- PyTorch for the training of critic networks . ¥ .
20 .
Results: . .
After the learning process, the model is able to perform the = |
optics correction in one single iteration with residual B-beating |« | L L = s 8
of 1-2% (up to 20% initially ) ) i
—104
—20 .

* before correction, (AB/B) = 20.11 %

Open questions: _
» After correction, (AB/B) = 1.36 %

- Understanding the model behaviour -30-

. : . . 95 0 0 9 5 8 5 9 58 0§ 59 8§ 8
- Comparison with other correction techniques S

- Extending the problem by adding more error sources

Reinforcement Learning based corrections for HL-LHC




Muon collider design studies: Final Cooling




Challenges of Final Cooling for the Muon Collider

International

/ \UON Collider
Collaboration
e Proton driven scheme: muons are produced by p+*-target interaction

e Muon beam is produced with a large transversal momentum

—> cooling is required
e Short lifetime of muons —> ionization cooling

Proton Driver Front End

SCooling

!

Acceleration

Collider Ring

— [ e —— g H 6
o) DV - ° o
o c o E ¥ w w0
Z % SA€E 5 8|3 S £ 2l s
- cof® 2 5|8 8 F ] [}
£ o w=u 2 |0 e 8 3
3 £ = @ o= A 8 e 2o —
Q 8 8%5 8|2 8o 32 o] ® "
< 108 £l § e @ 2 ©| £ || Accelerators:

§ o = “ || Linac, RLA or FFAG, RCS

~3 2

/ *NO
X

C] €1 N

https://muoncollider.web.cern.ch/

L

« Beams with transversal emittance €,,,,. of 0.3 mm are provided after the 6D cooling

design/general-parameters

« Final cooling: €,,,. = 0.05 mm has been achieved by H. K. Sayed (10.1103/PhysRevSTAB.18.091001 )

® €irans =

= 0.025 mm is expected to be required before acceleration.

[1] U.S. Muon Accelerator Program, FERMILAB-CONF-13-307-APC




Final Cooling concept

International

/C«UON Collider David Neuffer, ,,Principles and

ollaboration . . . ‘
applications of muon cooling

Transverse Cooling:

der 1 _dE By By d67 To minimize the heating v gy
s = — ﬁZ_Ed_ET + > ds effect, the absorbers are
2 2 > placed in a strong focusing - 7
Energy loss Multiple field. gl
term scatteringterm ...\ _e /= - = -
e  Minimum Emittance: Large ‘ Tma” emittance
b emittance
Ey ., = PiES Accelerator
Y072 e Ly, (dE | ds) | |
Momentum loss is Momentum gain
opposite to motion, is purely longitudinal

P, Py, Pv, AE decrease
L radiation length, E muon energy, B_. transverse B-function, d_= energy loss
S

« Final cooling: high field solenoidal channel (up to ~30 T) placing absorber inside (e.g. liquid hydrogen).
e Challenge: strong focusing to get low emittance —> higher fields and lower momenta
- cause more longitudinal emittance growth, energy spread

e Control the optics in absorber regions, minimise energy spread and reduce the transverse emittance R :




Final Cooling baseline

International
} lUON Collider
Collaboration . . .
A Gaussian input beam with €. =300 um and £ | =1.5mm

 For final cooling, the beam momentum is reduced initially to 135 MeV/c

« High-field magnets limited to 25—32 T, and the cooling beam momenta ranged from 135 MeV/
c to 70 MeV/c (40 to 20 MeV kinetic energy)
« Cooledto €. =55puande| =1.5mm, with a transmission of 50%

Matching coils LH, absorber

Longitudnal phase space
! rotation rf cavities
Acceleration rf

cavities

B (T)
B (T)

s 3 3.5 4

Drift for developing energy- =5 1'51 lzm ]2.

. : focusin
time correlations 9

coils

Transport coils

High field — low energy muon ionization cooling channel
Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer
Phys. Rev. ST Accel. Beams 18, 091001 — Published 4 September 2015




First steps towards applying ML

International
UON Collider
"Collaboration

+  Python “wrapper” for launching ICOOL, providing p,, €. ,, B-field (coils parameters), absorber settings

v automatic computation of initial beam distribution, generation of ICOOL code

v Additional analysis in Python

v Storing input and output of simulation in well-structured format (JSON)

—> v Simplified optimization set-up
v Easy integration of optimization methods

v Applied to linear optics optimization and emittance reduction.

M




Building a framework for automatic optimisation

International
UON Collider
Collaboration

Ecalc9 (Fortran

Vary parameters of the field - tracking > compute the optics

-> evaluate the objective function - adjust fields/absorbers

Python Python

Applied optimizations methods:

Nelder-Mead: Simplex algorithm, robust in many applications, but doesn’t allow multiprocessing
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead

Differential Evolution: stochastic population-based method, allows parallelization
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

Extremum Seeking: performs small oscillations in parameter space to find global solution

A. Scheinker and D. Scheinker, “Constrained extremum seeking stabilization of systems not affine in
control,” International Journal of Robust and Nonlinear Control 28, 568-581 (2018)

MM



https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

First results: simplified lattice

Internatipnal
UON Collider Note: simplified lattice, no re-acceleration
Collaboration
100 340 |
- each cell containing of 3 coils x 4 o 06 0,006
sheets, absorber density, initial 104 330/
. — 601 I — I =
momentum and beta- function : s L] 0.004 £
= Extremum seeking algorithm: much = #° 00 N o
r—0.2 '
faster for a larger parameter spaces, 20 3101
. r—0.4
easily extendable ol - o~ _  jo000
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5
3001 0.4
0.241 80 0.4 2901
0.3
. 0.221 Optimizing coils radius =z 60 0.2 E 2897 g
S 0.201 using Extremum seeking 2 s =270 025
h 018 algorithm 0.0 260 s
. 1 20 250
-0.2
016' > 240 i 0.0
0 0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 z[m]

z[m]

Developed matching routine produces acceptable results starting from
(random) initial guess

J




First results: simplified lattice

Internatipnal
UON Collider Note: simplified lattice, no re-acceleration
Collaboration
100 340 |
- each cell containing of 3 coils x 4 o 06 0,006
sheets, absorber density, initial 104 330/
. — 60 I —_ I -
momentum and beta- function : s L] 0.004 £
= Extremum seeking algorithm: much = #° 00 N o
r—0.2 ’
faster for a larger parameter spaces, 20 3101
. r—0.4
easily extendable ol - o~ _  jo000
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
3001 0.4
0.241 80 0.4 290 1
0.3
. 0.221 Optimizing coils radius = 60 0.2 E 2891 g
S 0.201 using Extremum seeking Z 40 S 'z 270 0.2~
h 018 algorithm 0.0 260 s
. 1 20 250
-0.2
0 0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 z[m]

z[m]

Developed matching routine produces acceptable results starting from
(random) initial guess

@® Tracking of thousands of particles at every optimization step

@ Increasing the complexity of the lattice —> more optimisation steps

J




Speeding up simulations with Supervised Learning

International
/C \UoN Colrder = Making use of simulations done during optimisation

ollaboration

\ f . . . . .
Beam — (slow) Emittance Earlle.r example: A. E.delen e.t al: ,,lv'lachlne. Ie.arn.lng for ord.ers of
parameters S ‘ reduction, magnitude speedup in multiobjective optimization of particle
. Simulations .. accelerator systems” , Phys. Rev. Accel. Beams 23, 044601, 2020
and cell design transmission
I Small set Small set I
| of inputs of outputs I

Train ML
surrogate model

1. Speeding up optimization: 2. “Inverse” design:

Predict emittance

reduction & transmission N ( Required b
Desired cooling ML Surrogate equired beam
/-' (fast) \1 performance el parameters and

cell design

ML Surrogate L.

Optimizer
model

‘\/

Updated settings

v First results demonstrating orders of magnitude optimization speed up
v Accurate prediction of initial parameters to achieve desired cooling performance

MJ




Parameter scans vs. Storing data from optimization

International
/C \UoK Collier = Making use of simulations done during optimisation

ollaboration

Ekin_init beta 0 Absorber 1
e from ES s from ES e from ES

200 4 randomly generated 200 1 randomly generated 175 1 randomly generated
150
150 1 150 125 4
100 A

100 1 100 1
75 A
50 50 1 07
25 4
0- T T T 04— 0-
0.06 0.08 010 012 014 05 06 07 08 09 10 11 12

= Easier to find the boundaries
= \Warm start for more complex problems




 Combining Surrogate Models and Extremum Seeking

International
/:\UON collider  Using Random Forest (decision trees-based) algorithm

ollaboration

. . : o - Final momentum spread
Emittance reduction Final longitudial emittance o P
: 100 4 = Simulated value | s Simulated value
= S'm‘flated value Predicted value | Predicted value
Predicted value ue 70 = Error o prediction
20 1 m= Error or prediction 80 ¥ Error or prediction €0 -
15 o 50
40 B
10 A 40 1 30 4
20 p
5 4 20 1
10 A
0" i 0- ' ' o 0.0 01 02 03 0.4 05
000 005 010 015 020 025 030 035 00 02 04 06 08 10 ) ) ’ ) ) ’

Model performance: train/test - 0.99/0.98

= Applied to more complex model which includes RF-optimization and energy spread/ longitudinal emittance control

60 e e . . e e
o ., ¥ Compute optimization function from ML-model prediction
200 v Optimization in a few minutes instead of ~1.5 hours for 200 steps using simulations
40
E E
%280 30§
: 260 20 °
240 10
0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
z[m]

J




Impact on cooling performance

International
/:\UON Collider  Using Random Forest (decision trees-based) algorithm —> Feature Importance Analysis

ollaboration

permutation importance

o S
w -

Mean decrease in impurity
o
~N

i

i

B

t

-

i

i
-

n24-

o
o

Ekin_init
beta_abs
14

2_1 A

31
Absorber_1 -
24

32
Absorber_2 4
alpha -

beta start 4

... obvious to an (experienced) physicist
—> Big achievement for a decision tree
v “what is this model actually learning?”

M.__A




Impact on cooling performance

International
/cOngﬁff’;'ti?oeﬁ Using Random Forest (decision trees-based) algorithm —> Feature Importance Analysis

permutation importance

o S
w 'S
L

Mean decrease in impurity
o
~N

o o
o -
i
i
t
1 I
i
i
-

n24-

Ekin_init

beta_start

beta_abs

14

2_1 A

31
Absorber_1

24

32

Absorber_2 4

alpha -

... obvious to an (experienced) physicist

—> Big achievement for a decision tree

v “what is this model actually learning?” Overcoming ML “complexity”:
- Start optimization with very simple models
= Easy to control free parameters and verify results
- Build more complex non-analytical models

__A*.___%____-_———-———”J{




Inverted models: warm start or final solution?

International
UON Collider . e e . . .
/Collaboration « Estimate the initial parameters to achieve a desired cooling performance

[

\ -
Desired cooling ML Surrogate Required beam
performance model parameters and
cell design

Input: Emittance reduction, momentum reduction, transmission
Output: required start energy, beta, absorber densities in 2 consecutive cells

Example: aiming for]Ae=50%, Apz = 60%, A N=90%,

predicted values are: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1




Inverted models: warm start or final solution?

International
UON Collider . e e . . .
/Collaboration « Estimate the initial parameters to achieve a desired cooling performance
\ (
Desired cooling ML Surrogate HEEE LR
e el parameters and
cell design

Input: Emittance reduction, momentum reduction, transmission
Output: required start energy, beta, absorber densities in 2 consecutive cells

Example: aiming for]Ae=50%, Apz = 60%, A N=90%,

predicted values are: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1

Verification by running ICOOL with predicted parametersjAe=0.493%, Apz = 0.61%, A N=0.98%

__A*.___%____-_———-———”J{




Outlook and Summary




Summary: Where can we use ML in accelerators?

Beam control > Defining a narrow task (optimization of
Detection of : e .
_ : and lattice specific parameters rather than the entire
instrumentation T R—— machine)

corrections

failures

> Performance measure of selected model
(beam size, pulse energy, ...)

Optimization and
operation
automation

> e.g. when no analytical solution is
available, rapidly changing systems,
no direct measurements are possible.

Virtual
Diagnostics

Important to identify where ML can surpass traditional methods
How much effort is needed to implement a ML solution? Is appropriate infrastructure for data
acquisition available? Enough resources to perform the training?




Achieved Results

v ML-based toolbox for optics control:
» Detection of instrumentation faults 2 no manual cleaning and repeated optics analysis
e Estimation of individual magnet errors > Better knowledge and control of individual optics errors
» Denoising of optics measurements = Increasing the quality of the measurements
e Reconstruction of optics observables = Additional observables without dedicated measurements

Summary




Achieved Results

v ML-based toolbox for optics control:
» Detection of instrumentation faults 2 no manual cleaning and repeated optics analysis
e Estimation of individual magnet errors > Better knowledge and control of individual optics errors
» Denoising of optics measurements = Increasing the quality of the measurements
e Reconstruction of optics observables = Additional observables without dedicated measurements

Outlook

v Paving the way for new studies currently being in progress:
- Optics corrections for High Luminosity — LHC upgrade:
- local correction
- exploring Reinforcement Learning for determining correctors settings.
- Exploring more complex optics error sources: coupling corrections
- Optimizing the design of future colliders.

Summary




Further References

* Machine learning for beam dynamics studies at the CERN Large Hadron Collider
https://doi.org/10.1016/j.nima.2020.164652

e Opportunities in Machine Learning for Particle Accelerators
https://arxiv.org/abs/1811.03172

e Optimization and Machine Learning for Accelerators (USPAS course)
https://slaclab.github.io/USPAS ML/

Summary



https://doi.org/10.1016/j.nima.2020.164652
https://arxiv.org/abs/1811.03172

Thank you for your attention!




ML in accelerators: summary

Accelerator Problem

Automation of particular
components

Online optimization of
several targets which are
coupled

Unexpected drifts,
continuous settings
readjustment needed to
maintain beam quality

Detection of anomalies

ML methods

Supervised techniques for
classification: Decision Trees,
SVR, Logistic Regression, NN

Reinforcement Learning,
Bayesian optimization,
Gaussian Process,
Adaptive Feedback

Unsupervised methods:
clustering, ensembles of
decision trees (e.g. Isolation
Forest), supervised

classification, Recurrent NN for

time-series data.

Benefits

To be considered

Saving operation time, reducing Dedicated machine time usually

human intervention, preventing
subjective decisions

Simultaneous optimization
targeting several beam
properties, automatically
finding trade-off between
optimization targets, allows
faster tuning offering more user
time.

Preventing faults before they
appear, no need to define rules/
thresholds,
no training is needed and can
be directly applied on received
data

required to collect training data
and to fine tune developed

methods.

Ensuring that all important
properties are included as
optimization targets.

In unsupervised methods,
usually no “ground truth” is
available > methods can be
verified on simulations.




ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

e Computationally heavy, slow Learning underlying physics directly 100% realistic simulations
simulations Supervised Regression models, from the data, faster execution are not possible 2 the

e Reconstruct unknown NN for non-linear problems model performance will be
properties from as good as your data is.
measurements

e Reduction of parameter Clustering, Feature Importance Speed up of available methods, Parameter selection and
space e.g. for optimization Analysis using Decision trees | simpler defined problems, easier to combination (feature

interpret engineering) can have

significant impact on ML
methods performance

e Missing or too noisy data Autoencoder NN Robust models, data quality Significant information
should not be removed from
the signal.




Supervised Learning

example 1
example 2
example 3

Training input
data

-
W owl .’.".
) »
’

Function with adjustable
parameters (weights, bias)

Model
mmm) [ output

Compute the loss
(approximation error ):
e.g. Mean Squared Error

y =f(2x,-wi+b)

T

e.g. Gradient Descent ;

> Generalized model explaining relationship between input and
output variables in all training samples.

What is “Learning”?

Training
output data




Training and generalization: no perfect model needed!

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.45e+08)
—— Model —— Model —— Model
——— True function ——— True function ——— True function
e Samples e Samples e Samples

Simple models underfit Complex models overfit
e  Derivate from data (high bias)

We don‘t want ,look up tables” «— « Very low systematical deviation (low bias)
« Do not correspond to data structure , , o . . .
(low variance) <«—> We don‘t want unreliable prediction » Very sensitive to data (high variance)

- Bias-Variance tradeoff




Regression Models

« Linear model for input X / output Y pairs, i — number of pairs (training samples): f(X,w) = wl'X

1

« Find new weights minimizing the Loss function: w* = argmin,, L(w)

0 Mpdaté eightit {orieasteigtamingiaputiouteat gaioverfitting

- Regularization places constraints on the model
parameters (weights)

- Trading some bias to reduce model variance.

Using L2-norm: Q(w) = 2 wl.z, adding the
i

constraint a Q(w) to the weights update rule
- The larger the value of «, the stronger the shrinkage

weights

1 2
Squared Loss function for model optimization: L(w) = > Z (Yl — f(Xi; w))

Ridge coefficients as a function of the regularization

200 A

100 A

—100 A

1079 1077 1075 1073
alpha




Relevant ML concepts and definitions

Supervised Learning

 Input/output pairs available

e Learn a mapping function,
generalizing for all provided data

e Predict from unseen data

o

J

Unsupervised Learning

e« Onlyinput data is given
e Discover structures and patterns

What is “Learning”?

Regression
2o
°o® %
sy’ *
. ®
Classification Clustering
oo o DDDD -'.i
\.. 0.. ’ DSE% - l.
o O _ 6% a o "
*® o "
9, 0 . ngt
*%e 1" g
e 0 0 0O s




Beam optics control at the LHC

Low B (pp)
High Luminosity

Interaction
Point

Octant 3 2

Cleaning

Relative beam sizes around IP1 {Atlas) in collision

Large Hadron Collider:

9300 magnets for bending and focusing the beam.
Main experiments: ALICE, ATLAS, CMS, LHCb

Low B
(B physics)

Collision rate: sufficient and balanced between experiments 2 Luminosity

> How to increase chances of collisions?

> How to ensure machine protection?
- Beam Optics control

Why and how is the beam optics controlled in the LHC?



IF in the LHC operation: detecting unknown failures

o Some artifacts in the signal are known to be related to BPM failures (manual cleaning would time
consuming, but potentially possible).

e How to deal with unknown failure modes?

Several BPMs with unusual pattern in the
spectra indicating a new failure mode

o0 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP1
2
E 10—1 ¢ : o‘
= 0 An e Soumagpeme oA e ¥
3510724 < , - . .
= > —
E |I | “ | 4
< 103
mmm BPM.23L6.B1 —4
Lot BPM.24L6.B1 { SVD
020 025 030 0.35 0.40 —61 ¢ IFafter SVD .
Frequency in tune units 0 5000 10000 15000 20000 25000
First observed in: “Analysis of tune Longitudinal location [m]

modulations in the LHC”, D.W. Wolf
Related to BPM failure: L. Malina,

‘Noise and stabilities”. https:// Since IF is based on the structures in given data
indico.cern.ch/event/859128/ > Ability to identify previously unknown failures




Isolation Forest Algorithm

. Forest consists of several decision trees ® Nsplits=1 || g Nsplits=2 | | g N_splits=3
5 @ ST S N O
. Random splits aiming to “isolate” each point Slee | X oo
. The less splits are needed, the more “anomalous” } g B g B g
. Contamination factor: fraction of anomalies to be feature x feature x " feature x
expecte din the given data Conceptual illustration of Isolation Forest algorithm
- First obtained empirically from the past
10-1{Amplitude —0.25 o 5
measurements = E
. . . . . E_ ©0.20
- Refined on simulations introducing g 107 E
expected BPM faults. %—10—3 EO01
< %ANJ\A'V\J
104 ETUI’IE’
« Input data: combination of several signal 0% frequency in tune units
properties obtained from harmonic analysis of Ry T4
BPM turn-by-turn measurements G2l ph A Bad 12
- No additional data handling needed. R % 2
£0.8 £ 0.8
= <
306 206
2 0.4 g = § 0.41 pe s
0.10 0.15 0.20 0.25 -0.5 0.0 0.5
Amplitude [mm] A Tune [107°]




