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Issues to address

« Part I: Examples and Aspirations
— At FNAL
— two workshops
— Snowmass

« Part Il: Limits of Al/ML — “real complexities”
— What is complexity
— Hamlet - EO and Faust
— Katsnelson and Kolmogorovs
— Complexity of accelerators

2% Fermilab
2 03/23/22  Shiltsev | ML/AI @BSW22



Part I:
Al/ML at Fermilab and “Around”
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Two Workshops

Al/ML for Particle Accelerator, X-Ray Beamlines and Electron Microscopy

Nov 1, 20217, 10:00 AM — Nov 3, 2021, 400 PM uS/Central httpS://indiCO.fna|.gOV/event/50731

Q@ Virtual

Description Al for Particle Accelerators, X-ray Beamlines, and Electron Microscopy Workshop @ ANL

Advances in instrumentation have dramatically increased the complexities associated with experimental facilities. This includes enhanced
facility capabilities as well as a substantial increase in the data generated. Consequently, the control and diagnostics of these experimental
facilities are becoming Increasingly complex, and the large output data streams necessitate smarter and more automated management and
analyses of the data. Artificial Intelligence (Al) methods hold the promise of substantially improved management, control, and data analyses with

the potential to dramatically increase experimental efficiencies as well as expanding and accelerating scientific discoveries

Argonne is the home to world-leading facilities such as the Advanced Photon Source (APS), the Argonne Tandem Linear Accelerator (ATLAS), the
Argonne Wakefield Accelerator (AWA), and the Electron Microscopy Center at the Center for Nanoscale Materials (CNM). In order to highlight Al
opportunities in these facilities, Argonne is hosting a workshop on Al for with participants drawn from 3 communities: particle accelerators, X-ray

beamiines and electron microscopy. The goals of the workshop are

Al for Accelerators - A Snapshot at Fermilab https://indico.fnal.gov/event/52417/
Friday Jan 14, 2022, 1:.00 PM — 2:40 PM us/Central

& Anthony Tiradani (Fermilab), Erik Gottschalk (Fermifaby , Lila Anderson (Fermitab), Tia Miceli

Description Showcase of current work on Al/ML for accelerators. (no registration needed)

What's the buzz about Artificial Intelligence for our accelerator systems?

Efforts have been ramping-up in the past couple of years 1o use Artificial Intelligence and Machine Learning (Al/ML) to enhance the performance
of our accelerators and beamlines. We anticipate even more action in the coming year. Come hear from machine experts and engineers as they
present advances in our latest Al/ML projects and what the future holds.

Audience take-aways

1. What are the current Al/ML accelerator controls projects
2. What are the plans for modernizing the accelerator control system to support Al/ML
3. How do Accelerator Division's Al/ML endeavors support Fermilab



Examples of Al/ML Activities/Projects

1. Machine learning for Linac RF Optimization Longitudinal
optimization

Booster Gradient Magnet Power Supply Control

“Big Data” Booster Control

Orbit Alignment at PIP2IT Using Bayesian Optimization
Al/ ML for NuMI Target System Monitoring

Real-time quench detection

FAST/IOTA RF gun stabilization and optimization

MI loss minimization vs Ml or RR situation

© 0 N O U A WN

Stabilization of 8 GeV slow extraction from Muon-C ring

10. 6D Cooling optics design with ML elements
£& Fermilab
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1.Machine learning for Linac RF Optimization

R. Sharankova, K. Seiya, M. Wesley, M. Mwaniki

Goal: deliver stable, high intensity beam to users

— Daily tuning of RF parameters to reduce beam loss and increase
beam output

Challenges
— Tuning relies on robust and stable diagnostics data
— Correlation of diagnostics data & RF parameters not always trivial
— Cannot manually tune many RF parameters simultaneously
Approach
— Reuvisit/improve/add instrumentation
— Explore ML techniques for RF regulation
 Offline optimization of multiple RF parameters
* Real-time momentum control
Success:
— Some visible... on the way to make operational

2% Fermilab
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1.Fermilab Linac

116 MeV
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750 keV
Drift tube Linac: 5 tanks
— Resonant RF frequency 201 MHz
Side-coupled Linac: 7 modules
— Resonant RF frequency 805 MHz
Transition section: Buncher & Vernier
— Match beam structure b/n DTL & SCL

Shiltsev | ML/Al @BSW22
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Status

Linac output:
Pulse length:

Efficiency:
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1.Real-time momentum control of a single cavity

 Beam loading causes energy spread along the Linac pulse
« Beam momentum going into Booster regulated by adjusting
phase of SCL module 7

e Goal: reduce long-term momentum drift as well as
momentum deviation in pulse
— Real-time regulation based on ToF and other diagnostics

FPGA Aria 10 SoC |

[Bunch Shape mon-tor}—> VX! LLRF

PHase e
-
Amplitude b

BLM

400MeV ToF signal

UoRSAD M 2T

Ii ot TANK 2 ‘ TANK 3 TANKE “S‘.’ """ "', MOOE  MOD4  MODL  MODE  MooT |
y |

""""

NI eI



2. Offline optimization of multi-RF phases with ML

* Loss monitor, toroid and BPM patterns are correlated with RF

parameters

Total loss
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We aim to train a model to recognize those correlations, and
find optimal RF setting for daily operations

3D pattern of

total loss vs

RFQ, Buncher
and DTL tank 5
phase set points
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2. Machine Learning for the Booster Gradient Magnet Power Supply
Jason St. John for the GMPS-AI team

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 104601 (2021)

Real-time artificial intelligence for accelerator control:
A study at the Fermilab Booster

« Booster injection efficiency is strongly dependent on the
Booster RCS magnet current stabilization

* Proof-of-principle success:

— machine learning models and demonstrated the feasibility of embedding such a model on a field-
programmable gate array (FPGA) for a high-uptime, low-latency implementation

— first developed a surrogate LSTM model, based on a recurrent neural network, to reproduce the
behaviors of the real GMPS system in the context of the accelerator complex, establishing a safe
environment for training reinforcement learning algorithms - then trained a deep Q-network,
based on a multilayer perceptron, to choose an optimal action (adjustment of one
control knob) to maximize the long-term reward, taken from the negative absolute value of the
regulation error (difference between the set and observed values of the
minimum GMPS current)

— found this surrogate-trained network achieved a factor of 2 improvement over the existing
controller in terms of the achieved rewards (goal was x10).

* Operational implementation ongoing
£& Fermilab

10 Shiltsev | ML/Al @BSW22 03/23/22



2. Booster GMPS - 15 Hz cycle

11

GMPS Al: The Need for Improving Regulation

Bending
Magnet
Current

Observed 81 /T for min and max currents: ~10 each
Perturbing influences:

Recent corrections made
Other nearby synchrotrons
Fluctuation of 60 Hz power
Temperatures, etc

Available data mostly with the
current PID regulator
Spread in B-field degrades beam

quality, degrades repeatability, &

Time contributes to losses

2% Fermilab
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2. Booster GMPS - Existing PID Circuit Regulation

s Human experts adjust target
! settings from time to time via
\ control system

settings measurements
series sampled ‘ (& errors)

connect Imin, Imax

Also records settings &
readings with some

unknown latency
Programmable b o o

Known factors excluded
from PID control logic:
Line Voltage variation,
Gallery temperatures, etc.

2% Fermilab
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2. Booster GMPS — Al Improves Stabilization ~x2

GMPS Al: Digital Twin as RL Environment e
Agent
o | e

LY SO

<] Environment e :
~X2 better

With LSTM providing environment, trained an MLP ageni‘ than PID
to tweak B:VIMIN prescription each timestep | e e Eera taust hemed bren) EaRnomaY
- Reward function: neg. abs. error = -|B:IMINER| |
- Q-learning @ 50 timestep episodes R
- Double DQN (target & policy model distinct)
- 32-experience (random) to update policy model
- e-greedy decay factor 0.9995 (min: 0:0025)
- Discretized options to change B:VIMIN:
0 (no change), £0.0001, £0.005, and +0.001.
- 3 lavers of 56 RelL.U nodes

2% Fermilab
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3. “Big Data” Booster Control System

Bill Pellico

Problem:
— “Data loggers” stores ~2500 channels of Booster control
— Operators use only some... trained on repeating problems

— Understanding reasons for any changes is challenging and time
consuming

Goal:

— Find a way for faster optimization/return to stable opertation
Approach

— Train Al/ML circuits to analyse “data logger” data

Status:
— Just started.. Asked DOE for $$

2% Fermilab
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4. Orbit Alignment at PIP2IT Using Bayesian Optimization

Beam orbit alignment in PIP2IT using
Bayesian Optimization with Gaussian

Processes

PIP-II Injector Test (PIP2IT) facility is near-
complete Front End of PIP-1l accelerator with
two first cryomodules

Beam trajectory is perturbed by misaligned
cavities and magnets

= Measured by Beam Position Monitors (BPMs)

Pavlo Lyalyutskyy, Eduard Pozdeyev

= Orbit is steered by orbit corrector magnets
Task: reduce orbit deviation in BPMs

Loa source
and LEBT
30 keV

RFQ

HWR 10 MeVv SSRI HEBT Dump
|

22 MeV
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4. PIP2IT Bayesian Optimization with Gaussian Processes

1. Choose a surrogate model and define a prior.

f(z1:x) ~ Normal (xo(z1:x), Xo(Z1:k, T1:x))

2. Use Bayes Rule to update our prior to get the posterior.

f(2)|f(z1:n) ~ Normal(un (z), o7 (x))
l-l"n(x) = z0(:1:, 171:71)20(-'1;1:71,:Bl:n)_1 (f(ml:n) = NO(:El:n.)) + ILO(:U)

0’,2,(1:) = 20(:12, :IZ) — Zo(x,wl;n)zo(xl:n,1:1;")—120(.'1:1;“,:3).

3. Use an acquisition function a(x) to decide next point to sample.
x; = argmax,, 4 o)

4. Add newly sampled point to the observations and go to step #2, until
convergence.

2% Fermilab
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4. PIP2IT Success — x2-3 faster convergence than Simplex

= Bayesian Optimization. Live Accelerator (20 DOF)
Convergence with 26 free parameters (degrees of freedom). : /‘}’vﬂ/ﬂw,
Convergence in ~30 steps. o Il
Convergence several times faster than Simplex m' N
10 l v v SSR14 MR Optiniaation Func
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5. Al/ ML for NuMI Target System Monitoring

Athula Wickremashinghe, Katsuya Yonehara

Challenge:

NuMI target system is world's brightest neutrino beam source for neutrino oscillation experiments. The goal of
target system Al is predicting a beam related systematic uncertainty for a neutrino flux per beam spill.

Context:

* The Validation of target system Al (present work)

« There are three layers of muon monitors and each monitor provides 9 x 9 pixel image. Our first Al analyzes
the image to predict beam position at the target, horn current, and beam intensity per beam spill.

« Anomaly detection (future work)

+ Collect muon monitor and other instrumentation signals to catch any accidental changes of beam element
(target density deterioration, misalignments of elements, water condensation in the beam line, etc)

* Prediction of neutrino flux (future work)

« Train Al with Monte Carlo simulations to predict a neutrino flux at neutrino detectors by using the observed
muon monitor signals

2% Fermilab
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5. Al/ML for NuMI Target Results

* The contour plot is mapping out the regions based on the high to low values of the standard
errors on predictions

Cantour Plot Contour Plot Contour Plot

OSe
M > . - o -
4 A . g # b
Objactive Vatue
rde
ol

4
- ~ .
Objective V.
~

- o
VO:‘ a .

« The tuned model has a good capability of predicting the beam position
horizontal and vertical, beam intensity and horn current with the standard
error of +/- 0.018 mm, +/-0.013mm, +/- 0.05 E12 and +/- 0.10 kA
respectively. Those are well below the required accuracy of beam related
systematic uncertainty.

* Planning to implement the ML model predictions for daily NuMI beamline
data monitoring

« NuMI beam simulation studies are ongoing to predict neutrino flux



6. Real-time quench detection

Duc Hoang, Christian Boffo, et al

Superconducting Magnet Quenches

* In order to maintain superconductivity,
superconducting magnets tppically
operate at or below liquid helium
temperature.

Growth of the resistive zone

* Due to several reasons (mechanical
imperfections, conductor motions, ...), a
specific spot in the magnet may heat up.

* This can eventually cause the whole
magnet 'to become resistive. And Wrth Wilson et al. Superconducting magnets for accelerators.
huge amount of current pumping
through, it can be catastrophic.

Magnet "training" requires 10s of quench events

aF reriman
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6. Real-time quench detection

Challenges:
Physics of quenches are not well-understood

* Typically are detected (milli-)seconds after the event
happens
« Magnet training is expensive (~$300k, 2 weeks per
magnet)
- future colliders and high TC superconductors even
more important
e Can we understand and potentially mitigate quench
events?
« Use (acoustic and other) sensors to detect

precursors to the gquench

2% Fermilab
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6. Anomaly detection with continuous learning

Base model

Update
model’s
state

For

every
10-second section

Training model

Data pre-processing

\

Evaluation of
reconstruction
loss.

-

Greater than
threshold?

trigger.

"Simple" ML algos using statistical
features of time series data

22
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Time label ;.od.ud with the window.
MQXFS1d (5 sensors) MDPCT1b (2 sensors)
12 inputs 6 inputs
2 2
Encoder _6 n9d§E| u ,‘ npdgsE u
3 nodes 2 nodes
Latent
el oo activat%' : ELU activ a% n: ELU
Decoder 6 nodes 4 nodes .
Reconstructed
Output 12 outputs 6 outputs
4% Fermilab
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6. Success: Detected 77% of anomalous events
ahead of the quench (<15s)

Triggered and non-triggered quenches in MDPCT1b Latent space of an anomalous event in MDPCT1b data
100009 &  Anomaly detected 74 p 15
X Anomaly not detected
‘/"M : .
9500 4 o
5 “ —
- .""'M §
S 9000 > ‘ ® Anomalous event =
§ * . | >
T g
3 800 o =
- 14
BO00 4 & 01
. Anomalies detected = T R R— s
7500 1
; o " % % % v
Quench Index Characterizing anomalous events

A lot more interesting data analysis that can be done
and would like to build a real-time platform!

2% Fermilab
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7. FAST/IOTA RF gun stabilization and optimization

A.Edelen, J.Edelen, J.Ruan, etc

Auralee started at FAST...

R78 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Neural Networks for Modeling and Control
of Particle Accelerators

A. L. Edelen, Student Member, IEEE. S. G. Biedron, Senior Member, IEEE. B. E. Chase, Member, IEEE,
D. Edstrom Jr., S. V. Milton, Senior Member, IEEE. and P. Stabile, Member, IEEE

'Neural Networks for Modéling and Control of
.. then Argonne and SLAC  Pparticle Accelerators

|

Auralee Edelen

PHYS]CAL REVIEW ACCELERATORS AND B 9" International Particle Accelerator Conference

Vancouver, BC
29 April = 4 May, 2018

Machine learning for orders of magnitude speedup in multiobjective = . Now Jinhao Ruan

optimization of particle accelerator systems trying to make the
Auralee Edelen®,"” Nicole Neveu,' Matthias Frey,2 Yannzi‘(f:k Huber®,? ML system Ope rati'

Christopher Mayes,' and Andreas Adelmann

'SLAC National Laboratory, Menlo Park, 94025 California, USA
2Paul Scherrer Institut, 5232 Villigen, Switzerland

onal at FAST Run 4

2% Fermilab
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Overview of IOTA & FAST linac

Low Energy Beamline (~25 m) High Energy Beamline (~100 m)
L P
<08 e c— —
8 8 2 3 - o

122
124
125

- - -

Low Energy Transport
(20 - SO Meve) High Energy Transport & Tes: Line (40-300 MeV ¢')

&Gun . 2.5 MaV p* Transport
cc1 2 k
Spectrometer

RFQ p* Source
Chicane Magnet Low Crergy 10TA Ring .
{Bunch Comgressor) Absorber 150 MeVe /25 MeVp

Low Energy Beamline (~25 m) e 1.3GHz
photocathode RF gun

— PITZ style gun with
solenoid and bucking

Low Energy Transport coil
(2° S0 Meve’) I' — Beam accelerated to
~4 MeV
E-Gun 1.3 GHz 9-cell Tesla

122 }

Sped,omete, type cavities
Chicane Magnet — Beam accelerated to
(Bunch Compressor) ~35 MeV
£& Fermilab
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RF electron gun at the Fermilab Accelerator

Science and Technology (FAST) facility ML to stabilize FAST
1.3 GHz (Copper) RF
gun

Basic concept:

I.  Use a predictive model to assess the outcome of
possible future actions

2. Choose the best series of actions
3. Execute the first action
4. Gather next time step of data
5. Repeat
- CWreturn * Measurements

LCW supply | =
{O—M— heater +
control mixing chamber To6 Model
Proposed I Process
Actions

Optimization g (ri‘r:)tena %Zt: Actions 1

. 2% Fermilab
03/23/22




Improvement: x5 faster stabilization or RF gun
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~{ Change In temperature of the [~
| water returning to the mixing
| chamber begins to affect T02

Shiltsev | ML/Al @BSW22

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

A 1--C step change under
the existing feed-
forward/PI controller.
Note that the oscillations
are due to the time delays,
thermal responses, and

| recurrent effect of the

water system, not a poorly
tuned set of Pl gains.

(same scale plot) A 1--C step change in TCAV
under the benchmark MPC. Note that the scales are
smaller than those of Fig. 2. These data were recorded
as part of a series of steps in the TCAV set point. Note
that this is not a perfect 1--C step, as there is an offset
between the original TCAV set point and the final
value it obtained in the prior to step.

£% Fermilab
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Current developments (J.&A.Edelen, D.Edstrom)

« Expand the AI/ML exrience onto FAST emittance optimization

28

Goal: Full phase-space control at the entrance
of the cryomodule using virtual cathode
images, magnet settings, cavity phases, and
cavity amplitudes

! Average Energy (E)

47 Emittances (e, €,

» Beta Function Values (B.. B,)

Hybrid
Neural

- d
Network
Gun Phase / 4

|

/

i

Alpha Function Values (a, , a,)

Solenoid Strength /

4| Number of Particles (N,)
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NN Architecture: 1st trained on Simulations

29

Data separated into Training,
Validation, and Test sets
— Training set: used directly in fraining

Validation set: interleaved with
fraining data but not used explicitly
in training

— Test set: outside range of fraining
data
Noise added fo the data before
training
Performance across validation
and test set

— Top: prediction and simulation as a
function of gun phase

— Bottom: rms percent error between
neural network and simulations
All output parameters perform
well except transmission

— All transmission is 100% in our range
of simulations so this is dominated by
noise added during fraining

Shiltsev | ML/Al @BSW22
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NN: Then trained on

Trained on Simulation + Measured Data

1ad|=— Measurements
—— NN Prediction

[mm-mrad]

En,x

750 1000 1250 1500 1750 2000
Sample Number

0 250 500

« Updating with measurements

— Top Left: Normalized emittance as a
function of sample humber for updated
dataset

— Top Right: Aloha as a function of sample
number for updated dataset
 Network retains the information from
the simulations
— Right: comparison of nhetwork prediction for

phase scan data from before and after
updating with measurements

30 Shiltsev | ML/Al @BSW22

measurements

Trained on Simulation + Measured Data

1 —— Measurements
| = NN Prediction
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Auralee’s Comments (2022 Workshop)

31
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8-10. (very briefly)

8. Ml loss minimization vs Ml or RR situation
* Losses at extraction from Ml (120 GeV) depend on Main
Injector RCS and on injector (8 GeV RecyclerRing)
e ML algorithm allow to decouple causes Ml vs RR
9. Stabilization of 8 GeV slow extraction from Muon-C ring
* Efficiency and stability slow extr (2" order) proton current
from Muon-Campus ring depends on may parameters
* Al/ML to help to stabilize
10. 6D Cooling optics design with ML elements
* Muon Collider needs ~50 6-D ionization cooling cells, final
emittance strongly dependent on ~200 parameters
* Al/ML help to get optimum and predict the best way to
tune the system in the future

2% Fermilab
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Part II:

On Truly Complex Systems
(which Al & ML are not yet capable of, but
might be some day...)

2% Fermilab
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What is complexity?

« Something that we immediately recognize when we
see It, but very hard to define quantitatively

« S. Lloyd, "Measures of complexity: a non-exhaustive
list” — 40 different definitions

« Can be roughly divided into two categories:

- computational/descriptive complexities

- effective/physical or structural complexities

2% Fermilab
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Computational and descriptive complexities

 Prototype — the Kolmogorov complexity:
the length of the shortest description (in a given
language) of the object of interest

 Examples:

- Number of gates (in a predetermined basis) needed
to create a given state from a reference one

- Length of an instruction required by file
compressing program to restore image

2% Fermilab
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That was a preface to get onto the
Complexity of Accelerators
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Future Collider Proposals:

8 Higgs/EW factories

e+e- 15 =024TeV, L=3.0 x10%*

CepC
e+e-, s =038 TeV, L= 1.5 x10%**

CLIC (Higgs factory)

e+e-, 5 =024 TeV, L= 73 x103*

ERL ee collider

g+e-, 5 =024TeV, L= 17 x103*

FCC-ee

gamma gamma X-ray FEL-based yy collider

gre- 5s=025TeV, L= 1.4 x103*

ILC (Higgs factory)

ep, s =13TeV, L=0.1 x10%*

LHeC

up, s =0.13 TeV, L= 0.01 x103*

MC (Higgs factory)

)
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17 () High Energy Collider Concepts/Proposals

Cryo-Cooled Copper linac e+e-, 5 =2TeV, L= 4.5 x103*

High Energy CLIC e+e-, /s =15-3TeV, L= 5.9 x103*

High Energy ILC e+e-,s=1-3TeV

FCC-hh PP, V5 = 100 TeV, L= 30 x103*
pp. Vs = 75/150 TeV, L= 10 x103*
Collider-in-Sea PP, v/ = 500 TeV, L= 50 x103*
LHeC

FCC-eh

CEPC-SPPpC-eh

ep, V5 = 1.3TeV, L= 1 x103*
ep, s =3.5TeV, L=1 x103*
ep, s = 6 TeV, L= 4.5 x1033
ep, vs =9 TeV

MC - Proton Driver 1 i, /s = 1.5TeV, L= 1 x10%*
MC - Proton Driver 2

MC - Proton Driver 3

U, S = 3 TeV, L=2 x1034
Ui, \s = 10 — 14 TeV, L= 20 x 1034

MC — Positron Driver pp, s = 10 — 14 TeV, L= 20 x103*

LWFA-LC (e+e- and yy) Laser driven; e+e-, /s =1 — 30 TeV

PWFA-LC (e+e- and yy) Beam driven; e+e-,{/s=1—30TeV

Structure wakefields; e+e-, /s =1 — 30

SWFA-LC e\

CLIC e+e- 3 TeV, 100 MV/m 50 km =YYY
- e e e ) ) e
= —
- --a |

pp 100 km : SPPC 75 TeV, 12 T magnets, FCChh 100/16 T

¥ e ——

Outside of the ring -~ R~ Inside of the ring
= Abr duct }O(},
D e 4
Valve box
I 7
| ¥

utu-10-14 TeV cme
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’
S uinjector ¥ A

i
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Accelerator Complexity

« Complexity to design (many dissimilar systems)

« Complexity to build (# elements,

# of systems, level of each

system — “standard/off-shelf, special, unique”)
« Complexity to reach energy ="make it work” (reliability)
« Complexity to reach performance “lumi” — CPT theorem:

1000 ¢
b Modern Physics Letters A " U ]
L Vol. 26, No. 11 (2011) 761-772 B B revatron-ll ZAC 1
.y n® e
<, 100} e o
" g ISR ‘ . P E
= I'cvatron-1 o | 1
() > . n s é »
% . CESR = S X
— a Ve = P
=t 10 ::- & £ -y
.a_.‘ L LHC
w L 5 = Y
g - - bpl’5. V4
=) I HERA
3 E A
RS i SLC
0.1

4 1 A ] A L 1 Al ] . ] a 1 " 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

LHC Lx100 in 2010-2018 (8 yrs) =
Complexity=8/4.6=1.74"' @°>"*

C-P =T Lto+T) = L(to) x 7/

ON PERFORMANCE OF HIGH ENERGY PARTICLE COLLIDERS
AND OTHER COMPLEX SCIENTIFIC SYSTEMS

VLADIMIR SHILTSEV

Ferma National Accelerator Laboratory, P. O. Bor 500, Batavia, IL 60510, USA
P

Table 1. “Complexities” of colliding beam facilities.
(', yvears Interval

SLC ete™ 1.6+ 0.1 19891997

Tevatron Run II p—p 20402 20022007

RHIC p—p 22403 20002004

HERA p-¢ 28+04 19922005

SppS p—j 3.3x+0.2 19821990

LEP ¢ "¢ 33403 1989-1995 _ .

ISR p-p 3.7+0.3 19721982 -Ermllab
CESR 7™ 44+04 19841997




On Complexity as Measure of
Difficulty to Reach Performance
(#4)

2% Fermilab
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Table 3. Tevatron Collider Run Il major luminosity improvements history.
Improvement L.umr nosity gain
Optics correction in Accumulator (AA) to Main Injector (M1) beam line | 12/2001 28
Tevatron quenches on abort stopped by electron lens 02/2002 W
Antiproton loss at the step #13 of Tevatron low-beta squeeze fixed 04/2002
New Tevatron injection _helix implemented 05/20"
New AA lattice reduces IBS, emittances 077
Beam Line Tuner to reduce emittance dilution at Tevatron injection
» Antiproton multi-bunch coalescing efficiency improved in M1 e To
: & LS %
Tevatron sextupoles tuned / SEMs taken out of antiproton beam ’ 6 10 %
New Tevatron helix implemented on ramp to reduce beam lo: J3 2 %
Tevatron magnet reshimming (to center coils inside iron y 2003 10 Y%
MI dampers operations / HEP store length increased 02/2004 30 9%
Improved efficiency of 2.5 MHz antiproton transfer- Y Q 04/20044 8 %
Reduction of Tevatron 3% to 35 c¢cm \ 05/2004 20 9%
Antiproton injections from both Recycler and 07/2004 8 %
Electron cooling system in Recycler opers & 01-07/2005 | ~ 25 %
Longitudinal slip-stacking system in M \ onal 03/2005 ~ 20 %
Tevatron octupoles optimized at inj~ 6 JGeV 04/2005 ~ 5%
Further reduction of the Tevatror O #s B* to 28 cm 09/2005 ~ 10 %
Antiproton production optim? 02/2006 10 %
Tevatron helical separatior \ vV improved, more protons | 06/2006 ~ 10 %
Tevatron collision helic¢ ac improved. better lifetime 07/2006 ~ 15 %
New Recycler work’ 0 smaller antiproton emittances 07/2006 ~ 25 %
Faster antiprotor am AA to RR (1 hour I min) 12/2006 ~ 15 %
. New antiprots igrmlicnl L.i lens operational 01/2007 ~ 10 %
Tevatron s~ ccuits set up for new working point 2007 ~ 10 %
Compe- % < chromaticity in Tevatron beam optics 2008 ~ 5%
EW u d by multi-bunch proton injection 20058-09 ~ 3 %%
Bette, auality by scraping in Main Injector 2008 ~ S Y%
Antiprc . size dilution at collisions / BO aperture opened up 2008 ~ 5%
55 Booster 0 emittances reduced / tune up of P1 and Al transfer lines ()0-\1-‘4’“(’)’”9’ ~ 10 %
Tevatron collimators employed during low-beta squeecze. more protons 04755197 ~ 8 Yo




CPT Theorem for Accelerators

CxP=T

C = Complexity of the machine

P = Performance (or Challenge)
= Ln(Lumi Increase Ratio)

T = Time to reach P
.i::e., [(T)EL(O) X eX‘p (Zzgzml & Fermilab

@BSW?22



Tevatron Luminosity Progress

57

Tevatron Peak Luminosity , 10" em™s”
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2001
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Complexity of Beams in log-Scale (TV tube=0)

Complexity 0.5 -
Complexity 1 -” p-synchrotron

Complexity 1 -_ B-factories

Complexity 1.5 -» _ eCool,HERA,EIC
——B € :.DCI-Orsay, 80

Complexity 2 -» a3 levatron,LHC

Complexity 2.59'“ Tev+elens BBC

£& Fermilab
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light sources

e+

Complexity 2 ..




L HC Luminosit Outlook 2003 V|S|on

radiation

damagz% limit
time to halve erro ~700 fb-1

[years]

ultimate
luminosity

X design
[1 034cm-2s-1] luminosity

2007 2009 2011 2013 2015 2017 courtesy J. Strait
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LHC Luminosity CPT-Prediction (2006)

LHC Desugn
710000- et w
(\'IE 1 BB Scenario #1, C=0.5
[ ]Scanario #2, C=2 after 2e32
S 80001 ERsconariosc> WU Tl
‘©
% btw 2014-2017
Q
.S 4000_“”.”A”m
& .
=
e B ([ |8 ITOR——————— LB RN - IN s
—
E . I
& ol _...||I||
X A S e N e T n O
S S e e e v o
< = = e <= o ) < >
@\ e @\ g\ g @\ (@ @\ @\

03/23/22



LHC: Design Lumi in July 2016
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Structural Complexity: Hierarchy and Patterns

Multi-scale structural complexity of natural patterns arXiv:2003.04632

Andrey A. Bagrov,""?'* Ilia A. Iakovlev,?' T Mikhail I. Katsnelson,>?'* and Vladimir V. Mazurenko?

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let f(z) be a multidimensional pattern

fa(z) its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between fi(z) and fa,qa(z)

(f(@)l9(x)) = [pdzf(z)g(z)
= |(fa(2)|fa+an(@)) -

5 ((fa(@)|fa(z)) + (fa+an(z)|fa+da(z))) | = B /l ﬂlﬂ IdA, as dA 0
1

BN | b

dA (lA
El('f\+d'\(r) f\ |f\+d1\( ) fz\(I)M'
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Main Message

« Complexity is about
— Dissimilarity
« Magnets, RF, plasma, cooling, drivers, FF, etc
— And Hierarchy:
« EgLHC 1ring A
O(10) sectors -
O(100) cells -
O(1000) main magnets _
O(10%4) aux magnets, YN
ST

O(10°) control channels

7

« Other "“Pyramids” (RF linacs/cavities, injectors, etc)

£% Fermilab
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More on Hierarchy and Complexity

« Complexity is ~ Log(# elements):

 Egif complexity of 1
complexity of 10
complexity of 100
complexity of 1000
complexity of 104
complexity of 10°

element is

elements is
elements is
elements is
elements is
elements is

« Unfamiliarity is another factor
— Advanced vs Traditional - add a unit (ie 10 SC 8 T ~ 100 NC) or more
— Beyond state-of-art vs advanced — add a unit (16T ~10x 8 T) or more

« Complexity of accelerators change in time

67

O 0ol A~ WDN B

— As technology progresses and experience accumulated
— i.e. building the LHC looked much harder 20 years ago than now...

Shiltsev | ML/Al @BSW22
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Thanks for

your attention! 72

Some references

* Many images/slides “borrowed” from presentations of the two above cited Al/ML
workshops (ANL'21 and FNAL'22)

 Some slides on structural complexity borrowed from M.Katsnelson presentation at the
RASA’21 Conference; extra details can be found in A.Bagrov et al arXiv:2003.04632

e CPT Theorem for Accelerators - V.Shiltsev, Modern Physics Letters A Vol. 26, No. 11, pp.
761-772 (2011)
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https://www.worldscientific.com/worldscinet/mpla
https://www.worldscientific.com/toc/mpla/26/11



