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Machine Learning/AI for Accelerators : 

Activities at Fermilab and in the “Vicinity”



• Part I: Examples and Aspirations

– At FNAL

– two workshops

– Snowmass

• Part II: Limits of AI/ML – “real complexities”

– What is complexity

– Hamlet → EO and Faust

– Katsnelson and Kolmogorovs

– Complexity of accelerators

Issues to address

03/23/22 Shiltsev | ML/AI @BSW222



Part I: 

AI/ML at Fermilab and “Around”
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Two Workshops

03/23/22 Shiltsev | ML/AI @BSW224

https://indico.fnal.gov/event/52417/

https://indico.fnal.gov/event/50731/



Examples of AI/ML Activities/Projects
1. Machine learning for Linac RF Optimization Longitudinal 

optimization

2. Booster Gradient Magnet Power Supply Control 

3. “Big Data” Booster Control 

4. Orbit Alignment at PIP2IT Using Bayesian Optimization

5. AI/ ML for NuMI Target System Monitoring

6. Real-time quench detection

7. FAST/IOTA RF gun stabilization and optimization 

8. MI loss minimization vs MI or RR situation

9. Stabilization of 8 GeV slow extraction from Muon-C ring 

10. 6D Cooling optics design with ML elements
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1.Machine learning for Linac  RF Optimization
R. Sharankova, K. Seiya, M. Wesley, M. Mwaniki

• Goal: deliver stable, high intensity beam to users

– Daily tuning of RF parameters to reduce beam loss and increase 
beam output

• Challenges

– Tuning relies on robust and stable diagnostics data

– Correlation of diagnostics data & RF parameters not always trivial

– Cannot manually tune many RF parameters simultaneously

• Approach

– Revisit/improve/add instrumentation

– Explore ML techniques for RF regulation

• Offline optimization of multiple RF parameters

• Real-time momentum control

• Success:

– Some visible… on the way to make operational



1.Fermilab Linac

Status

Linac output: 25mA

Pulse length: 35 msec

Efficiency: 94%

7

• Drift tube Linac: 5 tanks 

– Resonant RF frequency 201 MHz

• Side-coupled Linac: 7 modules

– Resonant RF frequency 805 MHz

• Transition section: Buncher & Vernier

– Match beam structure b/n DTL & SCL
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1.Real-time momentum control of a single cavity

• Beam loading causes energy spread along the Linac pulse

• Beam momentum going into Booster regulated by adjusting 

phase of SCL module 7

• Goal: reduce long-term momentum drift as well as 

momentum deviation in pulse 

– Real-time regulation based on ToF and other diagnostics
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2. Offline optimization of multi-RF phases with ML
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3D pattern of 
total loss vs 
RFQ, Buncher 
and DTL tank 5 
phase set points

• Loss monitor, toroid and BPM patterns are correlated with RF 

parameters

• We aim to train a model to recognize those correlations, and 

find optimal RF setting for daily operations 
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2. Machine Learning for the Booster Gradient Magnet Power Supply
Jason St. John for the GMPS-AI team

• Booster injection efficiency is strongly dependent on the 

Booster RCS magnet current stabilization

• Proof-of-principle success:
– machine learning models and demonstrated the feasibility of embedding such a model on a field-

programmable gate array (FPGA) for a high-uptime, low-latency implementation

– first developed a surrogate LSTM model, based on a recurrent neural network, to reproduce the 

behaviors of the real GMPS system in the context of the accelerator complex, establishing a safe 

environment for training reinforcement learning algorithms → then trained a deep Q-network, 

based on a multilayer perceptron, to choose an optimal action (adjustment of one

control knob) to maximize the long-term reward, taken from the negative absolute value of the 

regulation error (difference between the set and observed values of the

minimum GMPS current)

– found this surrogate-trained network achieved a factor of 2 improvement over the existing 

controller in terms of the achieved rewards (goal was x10). 

• Operational implementation ongoing 
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2. Booster GMPS – 15 Hz cycle
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2. Booster GMPS – Existing PID Circuit Regulation
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2. Booster GMPS – AI Improves Stabilization ~x2
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3. “Big Data” Booster Control System
Bill Pellico

• Problem:

– “Data loggers” stores ~2500 channels of Booster control

– Operators use only some… trained on repeating problems

– Understanding reasons for any changes is challenging and time 

consuming 

• Goal: 

– Find a way for faster optimization/return to stable opertation

• Approach

– Train AI/ML circuits to analyse “data logger” data

• Status:

– Just started.. Asked DOE for $$



4. Orbit Alignment at PIP2IT Using Bayesian Optimization

Pavlo Lyalyutskyy, Eduard Pozdeyev
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4. PIP2IT Bayesian Optimization with Gaussian Processes 
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4. PIP2IT Success – x2-3 faster convergence than Simplex
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5. AI/ ML for NuMI Target System Monitoring
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Athula Wickremashinghe, Katsuya Yonehara



5. AI/ML for NuMI Target Results
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6. Real-time quench detection
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Duc Hoang, Christian Boffo, et al

Superconducting Magnet Quenches



6. Real-time quench detection
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Challenges:
Physics of quenches are not well-understood

• Typically are detected (milli-)seconds after the event 

happens

• Magnet training is expensive (~$300k, 2 weeks per 

magnet)

- future colliders and high TC superconductors even 

more important

• Can we understand and potentially mitigate quench

events?

• Use (acoustic and other) sensors to detect 

precursors to the quench



6. Anomaly detection with continuous learning
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6. Success: Detected 77% of anomalous events 
ahead of the quench (<15s)
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7. FAST/IOTA RF gun stabilization and optimization 
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A.Edelen, J.Edelen, J.Ruan, etc

Auralee started at FAST…

.. then Argonne and SLAC

.. Now Jinhao Ruan 

trying to make the 

ML system operati-
onal at FAST Run 4



Overview of IOTA & FAST linac
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ML to stabilize FAST 

1.3 GHz (Copper) RF 

gun
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Improvement: x5 faster stabilization or RF gun 
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A 1-◦C step change under 

the existing feed-

forward/PI controller. 

Note that the oscillations 

are due to the time delays, 

thermal responses, and 

recurrent effect of the 

water system, not a poorly 

tuned set of PI gains.

(same scale plot) A 1-◦C step change in TCAV 

under the benchmark MPC. Note that the scales are 

smaller than those of Fig. 2. These data were recorded 

as part of a series of steps in the TCAV set point. Note 

that this is not a perfect 1-◦C step, as there is an offset 

between the original TCAV set point and the final 

value it obtained in the prior to step.



Current developments (J.&A.Edelen, D.Edstrom)

• Expand the AI/ML exrience onto FAST emittance optimization
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NN Architecture: 1st trained on Simulations
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NN: Then trained on measurements
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Auralee’s Comments (2022 Workshop)
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8-10. (very briefly)
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8. MI loss minimization vs MI or RR situation
• Losses at extraction from MI (120 GeV) depend on Main 

Injector RCS and on injector (8 GeV RecyclerRing)
• ML algorithm allow to decouple causes MI vs RR

9. Stabilization of 8 GeV slow extraction from Muon-C ring 
• Efficiency and stability  slow extr (2nd order) proton current 

from Muon-Campus ring depends on may parameters
• AI/ML to help to stabilize

10. 6D Cooling optics design with ML elements
• Muon Collider needs ~50 6-D ionization cooling cells, final 

emittance strongly dependent on ~200 parameters 
• AI/ML help to get optimum and predict the best way to 

tune the system in the future



Part II: 

On Truly Complex Systems 
(which AI & ML are not yet capable of, but 

might be some day…)
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What is complexity?

• Something that we immediately recognize when we 

see it, but very hard to define quantitatively

• S. Lloyd, “Measures of complexity: a non-exhaustive 

list” – 40 different definitions

• Can be roughly divided into two categories:

- computational/descriptive complexities

- effective/physical or structural complexities
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Computational and descriptive complexities

• Prototype – the Kolmogorov complexity:

the length of the shortest description (in a given 

language) of the object of interest

• Examples:

- Number of gates (in a predetermined basis) needed 

to create a given state from a reference one

- Length of an instruction required by file 

compressing program to restore image
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That was a preface to get onto the 

Complexity of Accelerators
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Future Collider Proposals: 

8 Higgs/EW factories
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CepC/FCCee
100 km

CLIC NCRF 72 MV/m
11 km

ILC SRF 31.5 MV/m
21 km

100MW RF
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17 (!) High Energy Collider Concepts/Proposals
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μ+μ- 10-14 TeV cme
10-14 km, 16 T magnets

CLIC e+e- 3 TeV, 100 MV/m 50 km

pp 100 km : SPPC  75 TeV, 12 T magnets, FCChh 100/16 T
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Accelerator Complexity

• Complexity to design (many dissimilar systems)

• Complexity to build (# elements, # of systems, level of each 

system – “standard/off-shelf, special, unique”)

• Complexity to reach energy =“make it work” (reliability)

• Complexity to reach performance “lumi” – CPT theorem:

03/23/22Shiltsev | ML/AI @BSW2253
LHC Lx100 in 2010-2018 (8 yrs) →

Complexity=8/4.6=1.74



On Complexity as Measure of 

Difficulty to Reach Performance

(#4)
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CPT Theorem for Accelerators

C x P = T
C = Complexity of the machine

P = Performance (or Challenge)

= Ln(Lumi Increase Ratio)

T = Time to reach P

i.e., L(T)=L(0) x exp (T/C)
03/23/22



Tevatron Luminosity Progress
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Complexity 0.5 light sources

Complexity 1 p-synchrotron

Complexity 1 B-factories

Complexity 1.5 eCool,HERA,EIC

Complexity 2 DCI-Orsay,’80

Complexity 2 Tevatron,LHC

Complexity 2.5 Tev+elens BBC

Complexity of Beams in log-Scale (TV tube=0)
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LHC Luminosity Outlook: 2003 Vision
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LHC Luminosity CPT-Prediction (2006)

LHC Design Lumi
btw 2014-2017
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LHC: Design Lumi in July 2016
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Achieved 6 years since 1st

collisions in April’2010
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Structural Complexity: Hierarchy and Patterns
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Main Message

• Complexity is about 

– Dissimilarity 

• Magnets, RF, plasma, cooling, drivers, FF, etc

– And Hierarchy:

• Eg LHC 1 ring

O(10) sectors

O(100) cells

O(1000) main magnets

O(104) aux magnets, 

O(105) control channels
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• Other “Pyramids” (RF linacs/cavities, injectors, etc)



More on Hierarchy and Complexity

• Complexity is ~ Log(# elements):

• Eg if complexity of 1 element is   1

complexity of 10 elements is 2

complexity of 100 elements is 3

complexity of 1000 elements is 4

complexity of 104 elements is 5

complexity of 105 elements is 6

03/23/22Shiltsev | ML/AI @BSW2267

• Unfamiliarity is another factor

– Advanced vs Traditional - add a unit (ie 10 SC 8 T ~ 100 NC) or more

– Beyond state-of-art vs advanced – add a unit (16T ~10x 8 T) or more

• Complexity of accelerators change in time 

– As technology progresses and experience accumulated

– i.e. building the LHC looked much harder 20 years ago than now…



• Many images/slides “borrowed” from presentations of the two above cited AI/ML 
workshops (ANL’21 and FNAL’22)

• Some slides on structural complexity borrowed from M.Katsnelson presentation at the 
RASA’21 Conference; extra details can be found in A.Bagrov et al arXiv:2003.04632

• CPT Theorem for Accelerators - V.Shiltsev, Modern Physics Letters A Vol. 26, No. 11, pp. 
761-772 (2011)

Some references
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Thanks for  
your attention!
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https://www.worldscientific.com/worldscinet/mpla
https://www.worldscientific.com/toc/mpla/26/11



