

0 Example: BDF/SHiP magnetic muon shield optimization with ML

1

ARIES WP6 APEC & iFAST WP5.2 PAF jBSW22, Valencia, 29 March – 1 April 2022

SHiP experimental setup

- Physics cased based on 2x10²⁰ protons on target (5 years of nominal operation)
 - → Signal yields from >10¹⁸ D mesons, >10¹⁶ τ , >10²¹ photons (>100 MeV)
- Dual detector system
 - 1. Search for HS decays ("HS detector")
 - 2. Neutrino physics and search for LDM recoil signatures ("SND")

Signal(mass, coupling) $\propto N_p \times \iiint_{min}^{max} f$ (Production angle, Decay opening angle, Lifetime) $d\phi \, d\alpha \, d\tau$ → Distribution for production angle, decay opening angle, lifetime depend on physics model and mass

Background suppression is combined effect of upstream shielding \otimes detector

- → Optimisation of geometry in terms of signal vs background is matter of choice of working point
- → Re-optimisation involves shortening the muon shield at the cost of somewhat higher muon rates
- → CDS detector rate limitation came from the use of emulsion film in SND

ARIES WP6 APEC & iFAST WP5.2 PAF jBSW22, Valencia, 29 March – 1 April 2022

Muon background

[N/1GeV/c] 06

10⁸

10

all muons >1 GeV/c cutoff

charm beauty

pions and kaons low mass $\rightarrow \mu\mu$

μμ pair production

- Beam-induced background flux
 - O(10¹¹) muons (>1 GeV/c) per spill of 4x10¹³ protons
 - 4.5×10¹⁸ neutrinos and 3x10¹⁸ anti-neutrinos in acceptance in 2×10²⁰ proton on target

R. Jacobsson

ARIES WP6 APEC & iFAST WP5.2 PAF jBSW22, Valencia, 29 March – 1 April 2022

Muon shield (free-standing)

Narrow spaces for coil \rightarrow limit coil current-turn and power dissipation (air cooling) ۲

> 1.6 1.6 1.6

> 1.5

1.5

1.4

1.3 1.3 1.28

→ Use of grain-oriented (GO) steel, sheets of 0.3-0.5 mm

- Technology studies produce realistic field maps for simulation \odot
- ➔ Assembly of GO steel
 - Investigation of welding followed by annealing
 - Welding of 5cm (150 sheets) blocks looks feasible
 - Requires large vacuum chamber

ARIES WP6 APEC & iFAST WP5.2 PAF jBSW22, Valencia, 29 March – 1 April 2022

6

1300 tonnes

Muon shield (free-standing part)

- Optimization of field configuration by Machine Learning with a sample of muons simulated with PYTHIA/GEANT
 - Assumptions: 1.7 T average field in core
 6 magnets of 5m length
 - 10cm space between magnetic regions
 - Whole setup described by 56 parameters
 - Bayesian optimization procedure
- Current loss function

$$f(W,\chi_{\mu}) = \begin{cases} 10^8 \ if \ W > 3kt \\ 1 + e^{10 \times (W - W_0)/W_0} \times \left[1 + \sum_{\mu} \chi_{\mu}(x_{\mu})\right] \end{cases}$$

- W weight of the muon shield
- W_0 weight of the baseline
- χ_{μ} weighted position of muon μ passing sensitive plane at position x_{μ}
- ➔ Optimization produces an idealistic field map

gb = gradient boosted decision trees rf = random forests

- Penalise muons entering the acceptance
- Length optimised implicitly via the weight
- Weight cut-off as regularisatio

Sounds easy

- Simulating one spill of 4E13 protons = month of CPU with 1600 cores
- Bayesian optimisation does not scale well for high-dimensional problems.
 - Computing model imposes additional constraints.
 - Make up to 100 guesses at once (with 16 nodes parallelising every function evaluation)
 - Use scikit-optimize implementation of Bayesian optimisation (DOI 10.5281/zenodo.1170575)
 - Use Gaussian processes and random forests as surrogate models.
 - Reduce muon sample by factor ~40 to speed up evaluation and even out coverage of phase space: 18 million beam-induced muons

8

Example of the result

• Muon flux "bow wave" determines ultimate envelope for the fiducial volume

ARIES WP6 APEC & iFAST WP5.2 PAF jBSW22, Valencia, 29 March – 1 April 2022

R. Jacobsson

9

Example of results

Typical muon paths in current shield for different energy ranges

- Muons impinging on decay volume: 5.8x10⁴ / spill
- Reconstructed muons in spectrometer 3x10⁴ / spill
- 2.1x10⁸ muon DIS interactions in decay volume wall in 2x10²⁰ protons on target

→ Rate of muons in spectrometer come from wrong muon charge/magnet polarity, large angle scattering and magnet inefficient regions (coils, structural etc)

Radiation protection...

