QCD and Nucleon Structure Heavy-ions and Quark-Gluon Plasma

10th ICFA Seminar on Future perspectives in High-Energy Physics 2011

Science driving facilities for particle physics

CERN, October 2011

A. Zaitsev, Protvino, IHEP

Scope

Session 6 QCD and Nucleon Structure

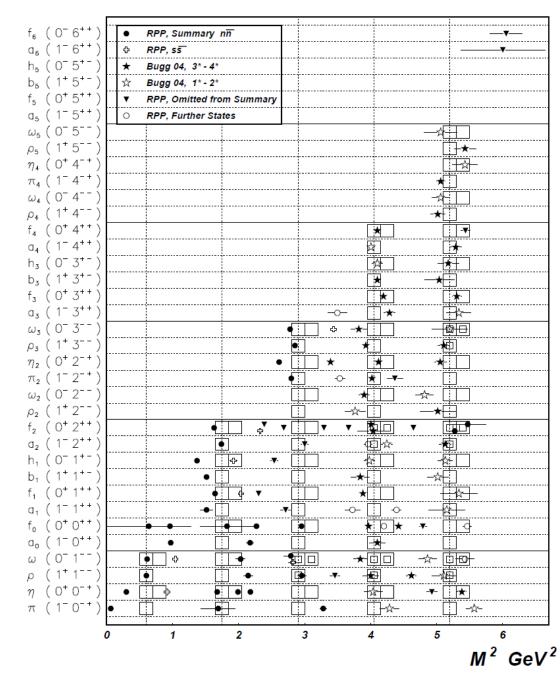
- Nucleon structure
 Sasha Glasov
- Spin effects & Semi-inclusive Deep Inelastic Scattering Matthias Burkardt
- High-energy Phenomena Robert Thorne
- Hadron Spectroscopy
 Xiaoyan Shen

Session 7 Heavy-ions and Quark-Gluon Plasma

- Strongly Coupled Plasma: Properties and Critical Point Search Barbara Jacak
- Opportunities at the the Energy Frontier Peter Braun-Munziger
- Nuclear Matter at High Barion Density Peter Senger

Nonperturbative QCD:

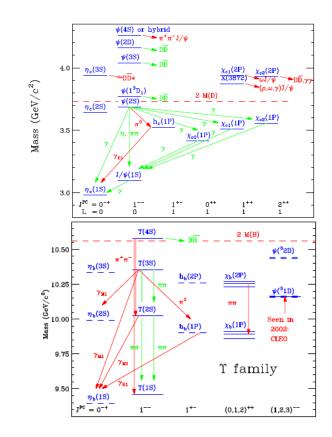
- Mass from nothing (at least 99%)
- Chiral Symmetry Breaking
- Confinement
- $<0|q \overline{q}|0>$
- QCD vacuum driving factor
- How to study it?
 - With hadron spectroscopy
 - With nucleon
 - With many quarks
 - With high temperature/pressure



Light mesons (excitations, exotics)

High excitations:

- the resonance masses follows simple laws, typical for string models
- most of these states are not well established
- many base characteristics are unknown, including masses, widths, branching ratios etc.


Exotic states: non (qq, qqq) objects. Some observations point to the existence of exotic objects.

Mesons

New opportunities:

- Nearly "infinite" statistics in some channels:
 - − COMPASS, VES π p \rightarrow exclusive diffraction N $^{\sim}10^{10}$
 - BES III $\sim 10^9$ J/ Ψ
 - Super c-tau ~10¹¹ J/Ψ
 - CEBAF
 - Φ (also η/η`) factory
- Problems to be solved:
 - PWA upgrade
 - − p̄ p↑ scan
- Heavy quark spectroscopy
 - Fast developing field
 - Threshold physics, exotics?
 - LHcB, BELLEII, SuperB,

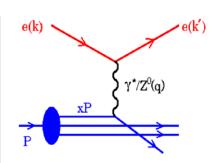
The X family: $X(3872) \rightarrow J/\Psi \pi + \pi -$ JPC = 1++ or 2-+ X(3914-3940)The 1-- Y family: 4008, 4260, 4360, 4660Charged Z states: 4050, 4240, 4430

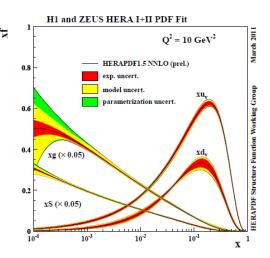
Baryons

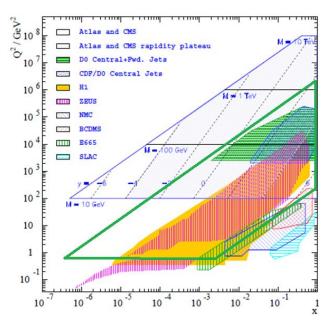
- Experimental data do not demonstrate a number of states predicted by quark models
- some states looks like exotics
- New methods are welcome
- Good field for low energy machines

New opportunities:

High statistics $\gamma^* \to X \overline{X}$: BES III, Super c-tau


Heavy-light barions: bcs, bcu bbu etc. : LHCb


In addition to standard beams ($\pi+-$, K+-, γ , γ^*) one can use reggeons with arbitrary IG JPC like $\pi-\rightarrow\eta$ R(IG JPC=1-0++): IHEP, Protvino

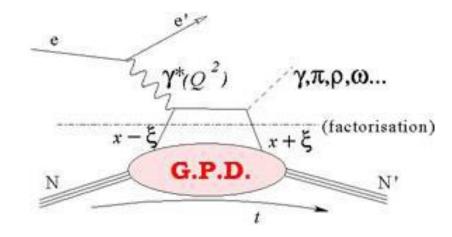

Nucleon structure

Parton Distribution Functions

- Neutral current Deep Inelastic Scattering (DIS) cross section
- $F_2(x,Q^2)$, $F_1(x,Q^2)$, $F_3(x,Q^2)$
- New facilities:
- CEBAF 12 GeV (2014)
- EIC (vs (~100 GeV); L~10³⁴cm-1 s-1) ?
- LHeC (Vs (~1.5 TeV); L~10³³cm-1 s-1) ?
- CEBAF 12 GeV: high x, Q2~6 GeV² for W>2 GeV
- Much increased luminosity for EIC and LHeC colliders compared to HERA.
- Increased center of mass energy for the LHeC allows for accurate measurements in EW regime
- Very low X (saturation?)

Nucleon structure Generalized Parton Distributions (GPD)

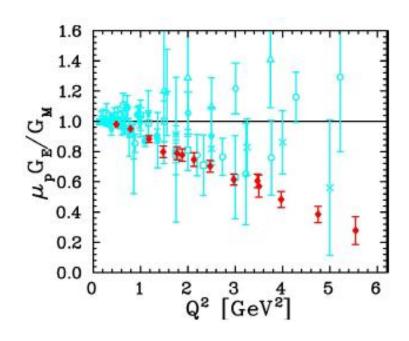
- GPD provide correlated information on longitudinal momentum xp and transverse spatial position r⊥
- Several GPDs: H, H, E, E,
- Basic method:
 Deeply Virtual Compton Scattering (DVCS)
- DVCS interfere with BH processes
 →beam charge/polarization asymmetry


First measurements: CEBAF

Plans:

- CEBAF 12 GeV
- COMPASS longitudinally polarized $\mu\pm$ beams with the energy of $E\mu$ = 160 GeV. COMPASS covers unexplored region at medium X

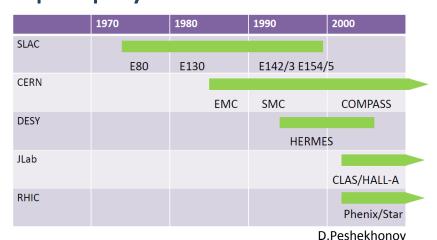
$$\int dx \mathbf{H}_{q}(x, \xi, t) = F_{1}^{q}(t)$$

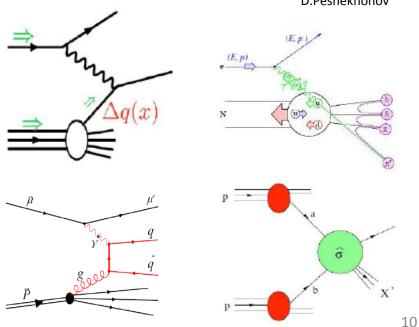

$$\int dx \mathbf{E}_{q}(x, \xi, t) = F_{2}^{q}(t)$$

Nucleon structure

Form-factors

- New information on proton structure:
- GE(Q²) ≠ GM(Q²) different charge, magnetization distributions
- Connection to GPDs: spinspace-momentum correlations
- At CEBAF12
 GE(Q²)/ GM(Q²) will be
 measured up to Q²=12 GeV²
- PANDA: time-like proton formfactors will be measured up to q²=15 GeV²

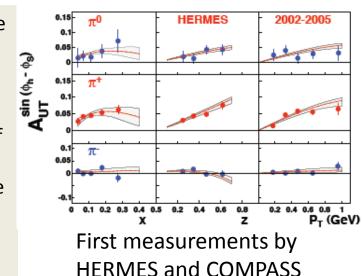



Spin Longitudinal spin physics

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z$$
small poorly unknown known

Methods:

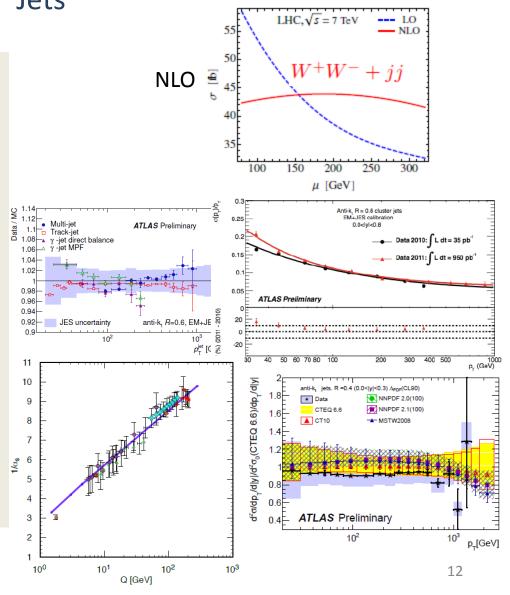
- Deep Inelastic Scattering → ΔΣ
- Semi-inclusive DIS (e.g. charm production) → ΔG
- Polarized protons inclusive scattering $\rightarrow \Delta G$: RHIC $p^{\rightarrow} + p^{\rightarrow} \rightarrow \pi +, \pi^{-}, \pi^{0}, \gamma$, Jet
- $p \rightarrow + p \rightarrow W^{+-} + X \rightarrow \Delta \Sigma$
- New experiments planned at JLAB, COMPASS, RHIC
- Good prospects for EIC , LHeC



Spin

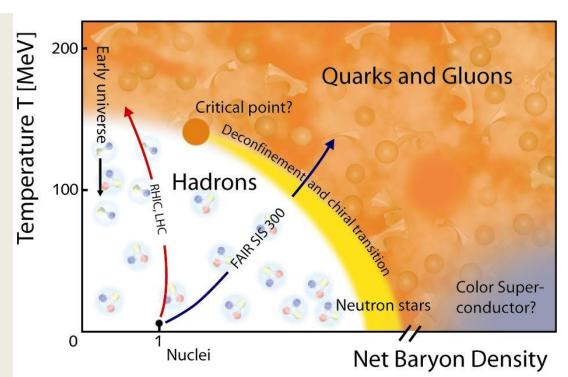
Transverse-momentum dependent parton distributions (TMD)

- The TMDs depend on the intrinsic motion of partons inside the nucleon and allow the reconstruction of the nucleon structure in momentum space.
- The 'simplest' TMD is the unpolarized function $f_1^q(x, k\perp)$
- $f_1^q(x, k\perp; s_q, S)$ may depend on all possible combinations of the pseudo-vectors s_q, S and the vectors $k\perp, P$ which are allowed by parity invariance. At leading order in 1/Q, there are eight such combinations, leading to the eight independent TMDs.
- How to measure TMD's? → SIDIS
 The hadrons from the fragmentation of a scattered quark, 'remembers' the original motion of the quark.

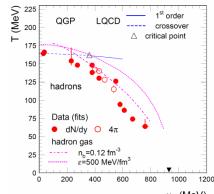

New measurements planned at CEBAF12 (valence quarks) and COMPASS.

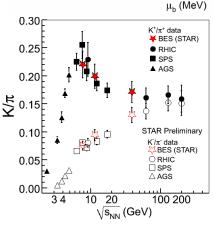
 $p \uparrow p \uparrow$ semi-inclusive ($\pi 0$, jets) at RHIC

Good prospects for EIC and LHeC.


High energy phenomena Jets

- Progress in calculations (NLO, NNLO)
- Anti-kT algorithm with resolution parameter R=0.4-1.2
 - reconstruct jets with simple cone-like geometrical shape from calorimeter clusters or charged particle tracks
 - infrared and co-linear safe
- Jet energy calibration is validated insitu. The uncertainty is below 2.5% (ATLAS).
- Jet energy resolution (~6% at E=1 TeV)
- α_s
- PDF
- Hard QCD evolving to high precision science


The phase diagram of strongly interacting matter

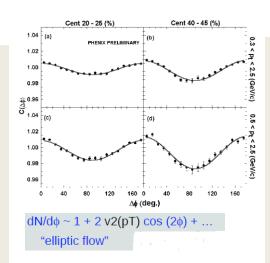

- RHIC data have shown robust collective flows: that confirms that QGP above the critical line is in a strongly coupled regime.
- Goals:
- Exploring the QCD phase diagram with heavy-ion collisions:
- RHIC & LHC: high temperatures, very small net-baryon density
- SPS (low energies), FAIR, NICA: moderate temperatures, very high net-baryon density

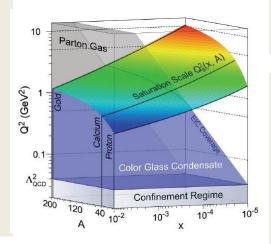
Heavy nuclei at high density

- Questions @ methods
- phase transition at high density r_B
 - excitation function and flow of strangeness
 - excitation function and flow of charm (e.g. melting of J/ψ and ψ')
 - excitation function of low-mass lepton pairs
- QCD Critical point
 - excitation function of dynamical event-byevent fluctuations
- Equation of State at high density
 - collective flow of hadrons
 - particle production at threshold energies (multistrange hyperons, open charm)
- chiral symmetry restoration at high ρ_B
 - in-medium modifications of hadrons

Facilities:

RHIC low energy-scan: bulk observables f=1 - 800 Hz


NA49/61@SPS: bulk observables f= 80 Hz


MPD&NICA: bulk observables $f = 10^3 \text{ Hz}$

CBM&FAIR: bulk and rare observables $f = 10^7 \text{ Hz}$

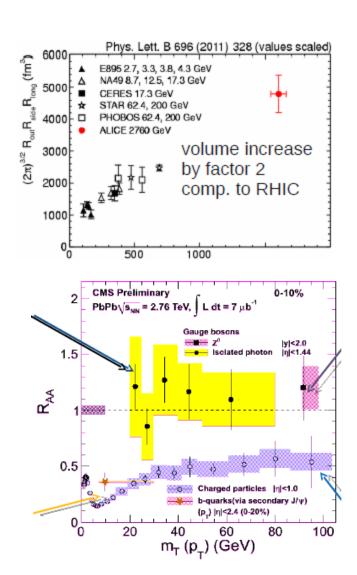
Strongly coupled plasma

- Questions & methods
- Coupling scale & quasiparticle search
 - charm hard (not thermal) probe
 - c vs. b in QGP
- Parton-plasma interaction
 - Jets ≤ 50 GeV, γ -jet
 - Ejet, l, q_{mass} , angle dep. of dE/dx
 - Jet virtuality ~ medium scale
- Screening length
 - as function of \sqrt{s} , p_T , Ronium
- Termalization mechanism
 - γdir yield, spectra & flow
- QCD in cold, dense (initial) state
 - y dependence in d+Au
- Gluon saturation scale
 - DIS $(\gamma * A)$

Facilities:

Luminosity x10 at RHIC
Large acceptance in both STAR&PHENIX

rare probe scan: $50 < \sqrt{s} < 200 \text{ GeV } \&$ asymmetric systems


EIC: either eRHIC & BNL or ELIC & JLaB

In distant future: LHeC & CERN

QGP matter at LHC

why LHC?

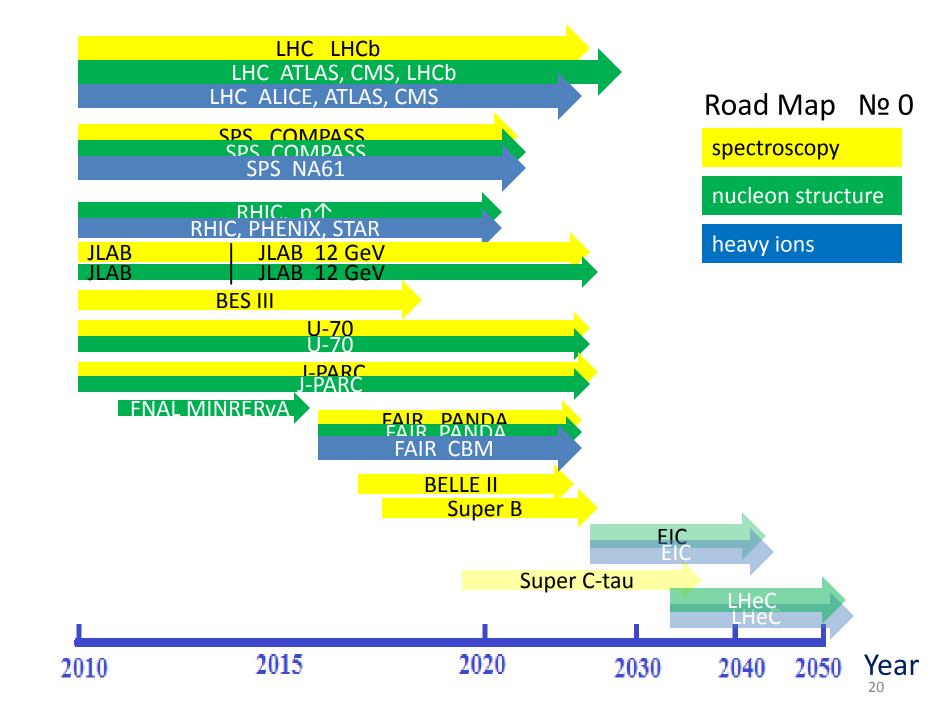
- much larger energy (> 20 x RHIC)
- very large volumes, temperatures, densities
- copious production of jets and heavy quarks
 - enough heavy quarks and resolution to study complete
 J/ and Y family together with open charm and beauty
- electro-weak probes
- use of quantitative tools (pQCD) possible

QCD and Nucleon Structure: Facility Matrix

TOPIC/FACILITY	BNL/RHIC	JLab 12 GeV	CERN/Compass	FAIR/PANDA	Fermilab/MI	CERN/LHC	JPARC/Hadron Hall	IHEP Protvino U70	BEPC/BES	DAPHNE/KLOE	KEK/BELLEII	SuperB	EIC	LHeC
Nucleon Structure														
Parton Distribution Functions														
Form Factors of the nucleon														
Gen. Parton Dists														
Spin and Semi-Inclusive														
Long Spin Phys, gluons, Orbital														
Transverse Momentum Dist														
High Energy Phen.														
Jets														
Multiparton interactions														
Diffraction														
Soft physics (multiplicity etc.)														
Very low x, gluon saturation														
Hadron Spectroscopy														
Mesons														
Baryons														

Heavy Ions/QGP

	SPS	RHIC	LHC	RHIC Up	LHC Up	Fair	Nica	LHeC	EIC
High Baryon Density									
phase transition/EoS at large ρ_{B}									
QCD Critical point									
chiral sym. restoration at large ρ_{B}									
High Temperature									
dynamical evolution, freeze-out									
viscosity, T _c , c _{s,,} Quasi-Particles,									
Parton energy loss				rare	rare				
Debye screening mass				rare	rare				
Initial State									
CGC/saturation/nuclear PDF		рА	рА	рА					


LHC Upgrade: > x 5-10 integrated Lumi., Detectors **pA:** proton-Nucleus **rare**: low x-section signals

RHIC Upgrade: Luminosity at low Energy, Detectors

EoS: Equation of State ρ_B : Baryon Density **CGC**: Color Glass Condensate

 T_c : Phase Transition Temperature: c_s : Speed of Sound

Spare slides

