

10th ICFA Seminar on Future Perspectives in High-Energy Physics 2011 Science Driving facilities for particle physics

Future Opportunities for Heavy Flavor Physics Experiments

Toru lijima Kobayashi-Maskawa Institute Nagoya University October 5, 2011

Talk Outline

- LHCb Upgrade
- Super B Factories
 - SuperKEKB / Belle II
 - INFN SuperB
- Charm-Tau Factories
 - + K decays (requested by conveners)

In 25 min !

Apology

in case of missing your favorite experiments and subjects !

Role of Flavor Physics

Variety of observables w/ different sensitivity to NP models.

➡ Clarify if NP exists in the TeV scale.

Elucidation of new physics.

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L o \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e\gamma$	***	***	***	***	***	***	***
$ au o \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi, D. M. Straub, Nucl. Phys. B830, 17-94 2010.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

 $K_L^0 \to \pi^0 \nu \overline{\nu}$

40 ns

10⁻¹³ (Step2) dep.on acc. power upgrade

LHCb Upgrade

- LHCb THCp
- Peak luminosity: $L_{peak} = 10^{32} \rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- Integrated luminosity: $L_{int} = 5 \rightarrow 50 \text{ fb}^{-1} (1 \rightarrow 10 \text{ fb}^{-1}/\text{year})$

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s o K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K_S^0)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o \phi\gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A^{dir}_{CP}(KK) - A^{dir}_{CP}(\pi\pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	-

Key measurements at LHCb

$B \rightarrow K^* \mu^+ \mu^-$

- FCNC processes sensitive to NP via angular distribution.
- LHCb measures also $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B_s \rightarrow \phi \mu^+ \mu^-$, $\Lambda_b \rightarrow \Lambda^* \mu^+ \mu^-$
- Belle II /SuperB can measure also $X_s I^+I^-$

$\mathsf{B}_{\mathsf{s},\mathsf{d}} \rightarrow \mu^+ \mu^-$

- Exploit statistical power LHCb
- Sensitivity of current limit (43 x 10⁻⁹ @ 90% C.L. with 40 pb⁻¹) in agreement with MC roadmap
- Measurement of f_s/f_d is currently stat. limited
- Upgrade:
 - − SM {BR $(B_s \rightarrow \mu^+ \mu^-)$ } can be measured to 8% precision @ 50 fb⁻¹
 - Strong constraints for NP models
 - Correlation $B_s \rightarrow \mu^+ \mu^-$ vs $B_d \rightarrow \mu^+ \mu^-$ can be done in upgrade ≈ 35%
 - Challenge: low BR $B_d \rightarrow \mu^+ \mu^-$ and background

LHCb Upgrade

Limitation at present LHCb: 2-3x10^{^32}cm⁻²s⁻¹ (L0 trigger)

- Readout detector at 40MHz to run full software trigger.
 - Replace all sub-detector front-end electronics to 40MHz readout.
 - Replace all silicon detectors attached to the current 1MHz readout (VELO, IT, TT, RICH HPD's).
- Remove some detectors due to increased occupancies (RICH1 aerogel, M1, possibly PS&SPD).
- New PID to cover low momentum region (TORCH)

Super B Factories

- Target luminosity: $L_{peak} = (0.8-1.0) \times 10^{36} \text{cm}^{-2} \text{s}^{-1}$ $L_{int} > 50-75 \text{ ab}^{-1} \text{ by early 2020's.}$
- Production rate: ~10¹⁰ BB, $\tau^+\tau^+$ and charms per year.

Key Measurements at Belle II

CPV in b→s modes FCNC b→sγ b→sll Tauonic decays LFV tau decays Precision CKM

QCD correction/error in ΔS

	Belle'06 (~0.5ab ⁻¹)	5ab ⁻¹	50ab ⁻¹
∆S(φK ⁰)	0.22	0.073	0.029
∆ S(η'K⁰)	0.11	0.038	0.020
$\Delta S(K_SK_SK_S)$	0.33	0.105	0.037
$\Delta S(K_S \pi^0 \gamma)$	0.32	0.10	0.03
Br(X _s γ)	13%		
$A_{CP}(X_{s}\gamma)$	0.058	0.01	0.005
$C_9 [A_{FB}(K^*II)]$		11%	4%
$C_{10}[A_{FB}(K^*II)]$		1.3%	4%
$Br(B^+ \rightarrow K^+ \nu \nu)$	<9Br(SM)	33ab ⁻¹ for	σ discovery
$Br(B^+ \rightarrow \tau \nu)$	3.5σ	10%	3%
$Br(B^+ \rightarrow \mu \nu)$	<2.4Br(SM)	4.3ab ⁻¹ for	δσ <mark>discovery</mark>
$Br(B^+ \rightarrow D\tau \nu)$		7.9%	2.5%
$Br(\tau \to \mu \gamma)$	<45	<30	<8
$Br(\tau \rightarrow \mu \eta)$	<65	<20	<4
$Br(\tau\to 3\mu)$	<209	<10	<1
$\Delta sin2\phi_1$	0.026	0.016	0.012
$\Delta \Phi_2$ ($ ho \pi$)	68°—95°	3°	1°
$\Delta \Phi_3$ (Dalitz)	20°	7°	2.5°

Ultimate measurements down to theory error ! ¹⁰

Search for charged Higgs ($B \rightarrow \tau v$)

Super B factories can measure the missing energy modes by fully reconstructing one of the B mesons.

(8GeV)

Decays of interest

construction

11

 $B \rightarrow X_u | v,$ $B \rightarrow K v v$

 $B \rightarrow D\tau v$, τv

_ e+(3.5GeV)

• $B \rightarrow \tau v/D \tau v$ probes $b-H^{\pm}-u$, $b-H^{\pm}-c$ couings to compare $b-H^{\pm}-t$ coupling from LHC high P_T programs.

LFV in τ Decays

model	Br(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10 ⁻⁷	10 ⁻⁹
SUSY+SO(10)	10 ⁻⁸	10-10
SM+seesaw	10 ⁻⁹	10-10
Non-Universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY+Higgs	10 -10	10 ⁻⁷

Precision CKM constraints

13

Hadron Spectroscopy

Future heavy flavor experiments enable us to search for new states and to study their detailed properties (J^{PC}, decay modes etc.)

How to achieve "Super Luminosity"

For higher Luminosity;

- 1) Vertical β function at IP (β_v^*):
- 2) Increase beam currents:

3) Increase ξ_v

In case of KEKB \rightarrow SuperKEKB 5.9 \rightarrow 0.27/0.30mm (x20)

1.7/1.4 → 3.6/2.7 A (x 2)

0.09 → 0.09 (x 1)

Basic concept: "Nano-beam scheme"

Invented by P. Raimondi for SuperB

Nano-beam collision w/ Crab Waist

- Invented by P. Raimondi
- Move y-waist along z with a sextupole on both sides at proper phase.
- The concept has been successfully tested at DAFNE

Machine Parameters

		Super	ſKEKB	SuperB (base line)	
Parameters	unit	LER	HER	LER	HER	
Circumference	m	301	.6.3	1258.4		
Energy	GeV	4	7	4.18	6.7	
Half x-ing angle	mrad	41	5	33		
β_x^* / β_y^* at IP	mm	32 / 0.27	25 / 0.31	32 / 0.205	26 / 0.253	
Hor. emittance (ϵ_x)	nm	3.2	5.0	2.46	2.00	
σ_x / σ_y at IP	μm	10.2/0.059	7.75/0.059	8.872 / 0.036	7.211 / 0.036	
Beam-beam (ξ _y)		0.0886 0.0830		0.0971	0.0970	
N _{bunches}		2500		97	78	
Beam currents	А	3.6	2.6	2.447	1.892	
Luminosity	cm ⁻² s ⁻¹	0.8 x	10 ³⁶	1.0 x	10 ³⁶	

Compared to KEKB/PEP II

•Smaller beam size and higher currents.

- •Larger (half) crossing angle than (11mrad @ KEKB)
- •Less energy asymmetry (higher E_{LER}) for longer Touschek lifetime (LER).

SuperKEKB IR

- New final focusing system based on the nano-beam scheme.
 - Consists of 8 superconducting magnets
 - Final focusing Q-magnets for each beam
 - Crossing angle 83 mrad to bring the FF magnets closer to IP

The 1st R&D QC1P magnet with correctors will be tested in October.

SuperNEKB construction schedu Revised on Sep. 10, 2011

Belle II Detector

Belle II T-shirts 1300 Yen

 Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
 Improved performance and hermeticity

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for endcaps

4 layers DS Si vertex detector \rightarrow 2 layers PXD (DEPFET), 4 layers DSSD

Central Drift Chamber:

smaller cell size, long lever arm

RPC µ & K_L counter: scintillator + Si-PM for end-caps

B

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation (barrel), prox. focusing Aerogel RICH (forward)

International collaboration from: Australia, Austria, China, Czech, Germany, Inida, Korea, Poland, Russia, Saudi Arabia, Slovenia, Spain, Taiwan, USA, Japan

SuperB Detector

F. Wilson @ Beauty 2011 Detector Design [arXiv:1007.4241]

Reuses much of BaBar e.g. CsI crystals

Italy, France, Canada, UK, Poland, US, Russia, China, Spain, Germany, Norway, Israel,...

SuperB Status

- SuperB is approved by the Italian governement!
- 19 M€ received in 2010, 50 M€ will follow in 2011
 - First large scale project in Europe besides CERN since HERA in ~1985
- First beams in ~2016. 15 ab⁻¹ per year
- Site has been decided (on Tor Vergata University Campus)
- A national consortium « Nicola Cabibbo Laboratory » is being created being INFN, IIT, Tor Vergata University and Italian Ministry of Research.

The 1st collaboration meeting at QMUL (Sept.13-*, 2011)

SuperB site

• The site has been decided; Tor Vergata !

• The site vibration has been measured, and seems to be small enough (10-30nm all around the ring).

The international site review committee visiting the Tor Vergata site.

Polarized electron beam

- Longitudinal polarization (~80%) improves LFV sensitivity.
- If LFV found, it provides information on helicity nature of NP.
- Also, τ EDM, τ g-2, sin² θ_{W} , ...

Benefits of Polarized Electron Beam

F. Wilosn @ Beauty2011

3) Electroweak:

Investigate LEP A_{FB} v. SLD A_{LR} discrepancy
 Investigate NuTev discrepancy.
 Constrain Higgs mass
 Sin²θ_w resolution ±0.00018

Running at Charm Threshold

- Decays of $\psi(3770) \rightarrow D^0 D^0$ produce coherent C=-1 pairs of D⁰'s.
- \rightarrow precision D mixing, CPV using quantum correlations.

Strong-phase measurement greatly reduce the error.

	Now	SuperB	SuperB+BES	SuperΒ +BES+φ(3770)
x (x 10 ³)	±3	±0.7	±0.4	±0.2
y (x 10 ³)	±2	±0.2	±0.2	±0.1
δ _{kπ}	±10°	±3°	±2°	±1°
$\delta_{k\pi\pi}$	±20°	±5°	±3°	±1°

Design luminosity = 10^{35} cm⁻²s⁻¹ at tau-charm

Physics at τ - Charm Factory

- Precision charm physics
 - Precision charm \rightarrow precision CKM (strong phases, f_D , f_{Ds} ...)
 - High sensitivity search for rare processes (rare D & $\Lambda_{\rm c}$ decays, CPV, mixing)
- Precision τ-physics with polarized beams
 - Lepton universality, Lorentz structure of τ-decay...
 - CPV
 - LFV decays
 - Second class currents
- High statistic spectroscopy and search for exotics
 - Charm and charmonium spectroscopy
 - Light hadron spectroscopy in charmonium decays ($N_{J/\psi}$ ~10¹²)

BEPC II Plan

Hesheng Cheng @ ECFA2010 meeting

On-going upgrade

- To increase single bunch current in collision
- To enhance beam-beam parameter towards 0.04
- To move horizontal tune to 0.51
- To increase colliding bunch number and pattern
- Squeeze β_y^*

Long-term upgrades

(under discussion)

- Increasing beam energy? (2.3GeV now)
- Crab-waist for higher luminosity
- Collision with polarized beam
 - Physics requirements
 e- beam plaization?
 location for rotators ??

BEPCII luminosity plan

$v_{\rm x}=0.51 \ \beta_{\rm y}^{\star}=1.2 \,{\rm cm}$ (10^{33}) 1A×1A 1×1033cm-2s-1 SCRF 1.0 $v_{r} = 0.51$ 800×800 mA vx=0.53 523×529 5×1032 cm-2s-1 mA 3.3×1032cm-2s-1 0.5 3.50E+32 1.000+32 2. SOE+32 2.007+8 2011 2013 Year

Super Charm Tau Factory at BINP

$E_{beam} = 1.0 - 2.5 \text{ GeV} : L_{beak} = 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (2 GeV): Polarized e⁻ beam

2 GeV linac

Main features:

- Two rings with a single interaction point
- Nano Beams + Crab waist collision

300 MeV linac

40 m

e- source

500 MeV e+

damping

ring

- SC wigglers to keep the same damping and emittance in the whole energy range (optimal luminosity ~10³⁵)
- Polarized e- injector and spin control to get the longitudinally polarized electron beam at IP

500 MeV linac

polarized e

source

converter

Linac-Ring Type c-τ Factory

- An option of the Turkish Accelerator Center (TAC).
- Positron ring (3.56 GeV) + Electron ERL (1 GeV) $\implies \beta \gamma = 0.68$
- $L_{peak} = 1.4 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$.

(Saleh Sultansoy @ ECFA2010 meeting)

Summary

Good prospect for heavy flavor programs !

2014 2015 2016 2017 2018 2019 2020

SuperB

 $L_{peak} = 10^{36(35)} \text{cm}^{-2} \text{ s}^{-1}[4\text{S}(\text{t-charm})]$

How long will these penguins swim?

 $L_{int} = 75ab^{-1} by \sim 202$

Relle T

SuperKEKB /Belle II

Super B

Polarization (80%) Operation at TauCharm

& More opportunities; Super Charm-Tau Factories.

LHCb upgrade

Lol submitted to LHCC in March [CERN-LHCC-2011-01]

Baseline for LHCb upgrade

- Increase luminosity to L~1 × 10³³cm⁻²s⁻¹
- Upgrade readout electronics and DAQ architecture to 40MHz
- Collect ~5fb⁻¹/year and ~50fb⁻¹ in 10 years

Main limitation of current detectors •Bandwidth & rate limitation of L0 trigger •Efficiency for hadronic channels flattens out at L~2-3 × 10^{32} cm⁻²s⁻¹.

•Can accumulate 1fb-1 / year.

Pile-up:

•Expcted pile-up rate at L~1 × 10^{33} cm⁻² s⁻¹ with 25ns BX-ings: μ ~2.3.

•Detectors work already at μ =2.7 in 2010 run (L=1.6 × 10³² cm⁻²s⁻¹, n_b=344)

23.9. 2010 19:49:24 Run 79646 Event 143858637 bld 19

SuperKEKB luminosity profile

SuperB Luminosity Model

Super B Machine Design

Parameters for 1×10^{36} Lumi (max 4×10^{36})

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	IInits	HFR (e+)	LER (e-)	HFR (e+)	LER (e-)	HFR (e+)	l FR (e-)	HFR (e.)	1 ER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.001	E+36	1.00	E+36	1.00	E+36	1.00	2+35	
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.6	
Circumference	m	125	BN I	125	i8.4	125	8.4	125	8.4	
X-Angle (full)	mrad	6	\$	6	6	6	6	6	6	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
βx@@.IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	-
β _v @IP	em	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
s _x (without IBS)	nm	1,97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	
⊧ _× (with IBS)	nm	2.00	2.4	1.00	1.33	2.00	2.46	5.20	6.4	
8 _y	pm	5	6.19	2.5	3.07	10	12.3	13	16	
o _x @ IP	μm	7.241	8.872	5.899	0.274	10.06 0	12.370	18.749	23.076	
ay@IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σκ	μm	11.4	133	8.0	185	15.	944	29.7	732	
Σγ	μm	0.0	50	0.030		0.076		0.131		
σ _L (O current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
σ _L (full current)	mm	5	5	5	5	4.4	4.4	5	5	Ľ
Beam current	mA	1892	2440	1460	1888	3094	4000	1365	1766	
Buckets distance	#	~		2		\rightarrow		1		
lon gap	К	2		2		2		2		
RF frequency	Hz	4.76	E+08	4.76	E+08	4.76E+08		4.76	E+08	
Harmonic number		19	98	19	98	19	98	19	98	
Number of bunches		97	8	9	78	19	56	19	56	
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y	-	0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	R
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
Energy Losa/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166	2
σ _E (tull current)	dE/E	6.43E404	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E404	6.94E-04	7.34E-04	
CM o _E	dE/E	5.00	E-04	5.00	E-04	5.00	5.00E-04		E-04	4
Total lifetime	min	4,23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	1
Total RF Power	MW	C 17.		C 12	.72 >	30.	48)	3.1	11	

Tau/charm threshold running at 10³⁵

SuperB

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline: Higher emittance due to IBS Asymmetric beam currents

RF power includes SR and HOM

> M. Giorgi, ICHEP2010

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory			
	now	(2017)	(2021)	(2021)	(10 years of	now			
		$5{\rm fb}^{-1}$	$75\mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	running) 50fb^{-1}				
		1	- Decays						
$\tau \rightarrow \mu \gamma \; (\times 10^{-9})$	< 44		< 2.4	< 5.0					
$\tau \to e \gamma \; (\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)					
$\tau \rightarrow \ell \ell \ell \ (\times 10^{-10})$	< 150 - 270	<244 a	< 2.3 - 8.2	< 10	< 24 ^b				
$B_{u,d}$ Decays									
$BR(B \rightarrow \tau \nu) (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2			
$BR(B \rightarrow \mu \nu) (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08			
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1			
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5			
$BR(B \rightarrow X_s \gamma) (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23			
$A_{CP}(B ightarrow X_{(s+d)} \gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-9}$			
$B \rightarrow K^* \mu^+ \mu^-$ (events)	250 ^c	8000	$10-15k^d$	7-10k	100,000	-			
$BR(B \to K^* \mu^+ \mu^-) (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39			
$B \to K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-			
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39			
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^e	f	0.040	0.03		-0.089 ± 0.020			
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-			
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		0.08	0.10		1.59 ± 0.11			
$S \text{ in } B \rightarrow K^0_S \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1			
$S \text{ in } B \rightarrow \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015			
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02			
		1	B_s^0 Decays						
${ m BR}(B^0_s o \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0			
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96 i	j	4.	5. (est.)		0.02 ± 0.01			
			D Decays						
x	$(0.63 \pm 0.20\%$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$			
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).			
<i>YCP</i>	$(1.11 \pm 0.22)\%$	0.05%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).			
q/p	$(0.91 \pm 0.17)\%$	10%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).			
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).			
		Other p	processes De	cays					
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002	1		clean			

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5{\rm fb}^{-1}$	$75 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	$50{ m fb}^{-1}$	
α from $u\overline{u}d$	6.1°	$5^{\circ a}$	1°	1°	ь	$1-2^{\circ}$
β from $c\overline{c}s$ (S)	0.9° (0.024)	0.5° (0.008)	0.1° (0.002)	0.3° (0.007)	0.2° (0.003)	clean
$S { m from} B_d o J/\psi \pi^0$	0.21		0.014	0.021 (est)		clean
$S ext{ from } B_s o J/\psi K^0_S$?			?	clean
$\gamma \text{ from } B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

- With the exceptions of y_{CP} and K*µµ, there are no planned or existing experiments that will surpass SuperB precision in these modes for at least the next two decades.
- The best place to measure the other 33 golden modes is SuperB!

Photon polarization in b \rightarrow s(d) γ

- In SM, photons from b→s(d)γ processes are left handed, therefore, (almost) no CPV.
- If unknown right handed current exists, CPV may arise
 clear NP signal !

Possible deviation from SM O(1): Warped extra dim. O(1): L-R symmetric model O(0.1): SUSY SU(5)

In SM, $|S(K^{*0}\gamma)| < 0.02, S(\rho^{0}\gamma) \sim 0$ $\Delta S(K^{*0}\gamma) = 0.027 @ 50 ab^{-1}$ $\Delta S(\rho^{0}\gamma) = 0.075 @ 50 ab^{-1}$

CPV in b \rightarrow s Penguins

Collision Scheme

Vertical beta function at IP can be squeezed to \sim 300µm. Need small horizontal beam size at IP. \rightarrow low emittance, small horizontal beta function at IP.

Detector Upgrade

Issues

- Higher background (×20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity \leftarrow v "reconstruction"

Possible solution:

- Replace inner layers of the vertex detector with a silicon striplet/pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- ▶ Replace endcap calorimeter by pure Csl.
- Faster readout electronics and computing system.

Vertex Detector w/ silicon pixels and strips

Outer radius 10 cm \rightarrow 14 cm

- Better tracking efficiency/ self tracking
- Larger acceptance for Ks
 (30% larger than Belle)

Silicon strip layer (Layer 3-6)

- 300 μm thick, DSSD
- Readout by APV25 ASIC

(50ns shaping time)

Pixel layer (Layer 1-2)

- DEPFET technology
- 50µm x 75µm pixel

IP resolution σ_{z0} ~50µm

Mechanical mockup of pixel detector

Particle ID

Barrel: TOP (Time-Of-Propagation)

Focusing TOP concept: •Reconstruct image of internally reflected Cherenkov in (X, T).

•Measure also Y w/ focusing mirror to correct chromatic dispersion effect.

Endcap: Aerogel RICH

•Proximity focusing RICH w/ hydrophobic aerogel radiator (λ_T >40mm) •Multiple radiators with different indices (n=1.045-1.050) to correct emission point uncertainty

SuperB PID: FDIRC

- Focusing block + highly pixilated photodetectors
- x 10 better timing resolution than the BaBar DIRC
- x 25 smaller volume than the BaBar DIRC
- 3D imaging to correct the chromatic dispersion and reduce backgrounds.

FBLOCK prototype

Performance of BEPCII Storage Ring

Doromotors	Design	Accept test result			
I al allicter s	Design	BER	BPR		
Energy (GeV)	1.89	1.89	1.89		
Beam current. (mA)	910	650	700		
Bunch current. (mA)	9.8	>10	>10		
Bunch number	93	93	93		
RF voltage	1.5	1.6	1.6		
v_s @ V_{RF} = 1.5MV	0.033	0.032	0.032		
β_x^*/β_y^* (m)	1.0/0.015	~1.0/0.0135	~1.0/0.0135		
Injection rate (mA/min)	200 e ⁻ /50 e ⁺	>200	>50		
$L (10^{33} \text{cm}^{-2} \text{s}^{-1})$	1.0	0.	33		

Factor of 33 improvement in luminosity at May 2009

BEPCII at Beijing

- A high luminosity double-ring collider (E_{beam}=1-2.3 GeV).
- Luminosity: $L_{peak} = 1x10^{33} \text{cm}^{-2}\text{s}^{-1}$ (0.33x10³³ cm⁻² s⁻¹ now).
- BES III runs from 2008..

BINP SCT Machine Parameters

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV				
Circumference	780 m							
Emittance hor/ver	(8 nm/0.04 nm	@ 0.5% coupling	\sim				
Damping time hor/ver/long		30/30)/15 ms					
Bunch length	16 mm	11 mm	10 mm	10 mm				
Energy spread	10.1·10 ⁻⁴	9.96·10 ⁻⁴	8.44·10 ⁻⁴	7.38.10-4				
Momentum compaction	1.00-10 ⁻³	1.06·10 ⁻³	1.06·10 ⁻³	1.06·10 ⁻³				
Synchrotron tune	0.007	0.010	0.009	0.008				
RF frequency		508	3 MHz					
Harmonic number		1	300					
Particles in bunch		7.	10 ¹⁰					
Number of bunches	390 (10% gap)							
Bunch current	4.4 mA							
Total beam current	(1.7 A)							
Beam-beam parameter	0.15	0.15 0.15		0.095				
Luminosity	0.63·10 ³⁵	0.95·10 ³⁵	1.00-10 ³⁵	1.00.1035				

References

- Belle II Technical Design Report,arXiv:1011.0352
- Physics at Super B Factory, arXiv:1002.5012
- sBelle Design Study Report, arXiv:0810.4084

- Super B Progress Report-- Physics, arXiv:1008.1541
- Super B Progress Report– Accelerator, arXiv:1009.6178
- Super B Progress Report-- Detector, arXiv:1007.4241

 LHCb Upgrade LoI, CERN-LHCC-2011-001 available at LHCb HP (http://lhcb.web.cern.ch/lhcb/)

Talks at 88th ECFA meeting; http://indico.cern.ch/conferenceDisplay.py? confld=111130