Experimental Overview

ICFA Seminar, CERN, 3rd October 2011

Terry Wyatt. University of Manchester.

Overview of the Overview

- Heavy Quarks (top, b, c)
- EW & QCD
- Higgs
- BSM searches
- Heavy ions
- Neutrinos

With thanks to all the speakers at LP11, whom I have liberally plagiarized

2011: a great year for colliders!

- But also a poignant year
 - Final data taking summary from Tevatron
- Data taking efficiencies > 90% for most experiments
- Phenomenal speed from data taking to physics results!
- LHC aperture, emittance, reproducibility, beam instrumentation, agreement with simulations
 - → long term prospects look excellent

Auto luminosity leveling for LHCb at $<\!\mu\!\!>\approx\!\!1.5$

LHC luminosity determination

$$\mathcal{L} = \frac{n_{\rm b} f_{\rm r} n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$

- Calibrated using van der Meer scans
- Present uncertainty ±3.7%
 - dominated by beam current measurements ±3%
 - already impressive
 - could come down by around a factor of two?

Electroweak production of single top

Try to distinguish s and t channel production

Top forward-backward asymmetry

LHC **Tevatron** top top anti-top anti-top

- Asymmetry of 5.8±0.75% expected at Tevatron, much smaller at LHC
 - CDF and D0 see larger effect at ~2.4 σ more to come from 10 fb⁻¹ sample
 - CMS: Aⁿ=-1.6±3.0(stat)^{+1.0}-1.9(syst)% ATLAS: Aⁿ=-2.4±1.6(stat)±2.3(syst)% Theory: Aⁿ=1.3%

CDF sees mass dependence

> not confirmed by DØ

A_{th} of the Top Quark

8

-1

Search for $B_{s} \rightarrow \mu\mu$

CDF recently reported a hint of signal:

- p-value background only: 0.3%
- p-value background + SM Br: 1.9%
- $Br_{CDF} (B_s \rightarrow \mu \mu) = 1.8^{+1.1}_{-0.9} \times 10^{-8}$

• LHCb: calibrate mass scale and resolution with J/ ψ and Υ

CMS+LHCb: Combined $B_s \rightarrow \mu \mu$ Limit

- Use (f_s/f_d)_{LHCb}= 0.267^{+0.021}-0.020
- p-value background only: 8%
- p-value background + SM BR: 55%
- $Br(B_s \rightarrow \mu \mu) < II \times 10^{-9} @ 95\% CL$
- Given that the 95% CL is still 3.4 x SM, there remains plenty of room for NP, keep an eye in the near future!

• Δm_s (world average) = 17.731 ± 0.045 ps⁻¹

Dominated by LHCb with 341 pb⁻¹

• Δm_s (Standard Model) = 16.8 +0.26 -0.15 ps⁻¹

CP violation in neutral B meson semileptonic decays

CP violation in neutral B meson semileptonic decays

New physics in B_d system? Golden mode, *B* Factories

• Tension between observed values of $\sin(2\beta_{cc})$ and $\mathcal{B}(B^{\pm} \to \tau^{\pm}\nu)$ and predictions from fit

D⁰ mixing

Large uncertainty in SM mixing rate more difficult to identify New Physics contributions

Measurements so far consistent with zero CP violation

Jets and QCD

Ratio of 3- to 2-jet rates

Precision EW Fit Summary

- Will require many `engineering' measurements
 - PDFs, vector boson p_T, etc.

-3 -2

-1 0

1

(O₄₄ - O_{meas}) / σ_{meas}

2 3

<u>Vector boson p_T</u>

• First measurements from the LHC

 ϕ^{\star}_{η}

A new idea from
 DØ: φ*_n

- Very much reduced systematic uncertainties
- Statistics limited even with ~1M Z

Parton Distribution Functions and vector boson rapidities

3.5

 $|y_7|$

Preliminary

 $p_{T}^{l} > 20 \text{ GeV}$

3.5

4

<u>Running of α </u>

$$lpha(q^2) \,=\, lpha \,/ \left(1 - \Delta lpha_{
m lep}(q^2) - \Delta lpha_{
m had}(q^2)
ight)$$

- Uncertainty dominated by $\Delta \alpha_{had}(q^2)$
 - effect of qq loops at low q²
- Cannot be calculated from first principles in pQCD

Electroweak di-boson production (leptonic modes)

Sensitive to potential new physics contributions, e.g., at triple gauge coupling vertices

Current observations (small statistics) consistent with SM predictions

Long term area of study at LHC! _

Wγ

Data

UWZ Zγ

150 200 250

L dt = 7.1 fb⁻¹

300 350

L dt = 1.09 fb

110

m_Z (GeV)

120

Z p_ [GeV/c]

+Data W+Jets

Z+Jets ₩Z→3lv

VV It

100

Z+jets

Htī

WZ+ZZ production (lepton+jet modes)

Higgs searches

• EW fit

 $qq \rightarrow Wh$

 $qq \rightarrow qqh$

 $bb \,{\rightarrow}\, h$

 $gg,qq \rightarrow tth$

TeV4LHC Higgs working group

120

 10^{-3}

 10^{2}

10

100

σ [fb]

- $m_{H} < 161 \text{ GeV} @ 95\% \text{ CL}$
- Region preferred by EW data is within reach of Tevatron and LHC experiments

SM Higgs production

 $gg \rightarrow h$

140

160

TeV II

 $qq \rightarrow Zh$

200

180

WZ

Higgs Searches at High Mass

- Look for leptonic decays of WW
- Look at azimuthal angle between the two charged leptons
 - Higgs: small $\Delta \phi$
 - Standard WW events: large $\Delta \phi$

Higgs searches: background subtracted distributions

Current CDF+DØ Combined Limits

- In the absence of a signal
 - Set a limit on the allowed cross section times branching ratio for Higgs production
 - that is, how large could cross section times branching ratio for Higgs production be before it would have been visible?
 - Express limit as a ratio to the cross section expected in the Standard Model

Standard Model Higgs ruled out @ 95% CL if the limit reaches this level!

Higgs searches @ CMS

Expected exclusion mass range: 130 – 440 GeV Observed exclusion mass range: 145-216, 226-288, 310-400 GeV

Higgs searches @ ATLAS

Excluded by ATLAS at 95% CL : 146-466 GeV, except 232-256, 282-296 GeV Expected if no signal at 95% CL : 131-447 GeV

□ LHC provides first direct exclusion (95% CL) of a large mass range until now unexplored
 □ The best-motivated low-mass region (EW fit: m_H < 161 GeV 95% CL) still open to exploration

 \Box Data are within $\pm 2\sigma$ of expectation for no signal over full $m_{\rm H}$ range \rightarrow no significant excess

SM Higgs prospects

- The gold standard for SM Higgs discovery or exclusion is the same: 5σ (one-sided CL ~ $3x10^{-7}$)
 - Finding the SM Higgs is clearly an important discovery, but
 - Excluding the SM should be regarded (and presented to the outside world) as a discovery of equal or greater significance
- The most challenging region is for M_H around 114 GeV:
 - Tevatron and LHC searches are complementary
 - Tevatron (WH & ZH, with $H \rightarrow bb$), LHC ($H \rightarrow \gamma \gamma$)
- With roughly 10 fb⁻¹ per experiment at both Tevatron and LHC expect to reach combined 5σ sensitivity over the entire range 114 < M_H < 600 GeV
- Either outcome (exclusion or discovery) will be just the start of a major programme of work requiring:
 - Years of LHC running at design luminosity and energy
 - The full capability of the LHC detectors and ingenuity of the analysers
- If light Higgs is excluded at 5σ need to discover mechanism that prevents cross section for V₁V₁ scattering from violating unitarity
- If light Higgs is discovered at 5σ need to measure its mass and verify that all of its properties are consistent with those expected in the SM

Searches for new physics

ATLAS Preliminary

CL, observed 95% C.L. limit

---- CL, median expected limit

exp. limit 68%, 99% CL

data PCL 95% C.L. lim

^{it} = 1.04 fb⁻¹, **v**s=7 TeV

σ_{susy} = 0.01 pl

σ_{susy} = 0.1 pb

susy = 10 pt

LEP2 q̃

1500 1750 2000

gluino mass [GeV]

---- ADD M_D2δ2

Ζ→νν

W→lv

QCD

 $Z \rightarrow l^+l^-$

Data

📕 tī

lepton 2011 combined

1000

500

600

700

E^{miss}_T [GeV]

800

1250

Nothing seen yet (that the experiments are talking about ;-) ٠

N.B. The LHC was designed to deliver 100s fb-1 @ 14 TeV so it is early days yet! ۲

$\mu \rightarrow e\gamma$ search: MEG experiment @ PSI

54 55 56 E_e (MeV)

-0.9995 -0.999 -0.9985 -0.998

 $\cos\Theta_{e\gamma}$

52

51

50

53

54

•

Br(µ→ev) < 2.4 x 10⁻¹²

- @ 90% CL

- LHC performed extremely well for the Pb-Pb run (Nov 2010)
 - delivered ~ 8 μ b⁻¹ in 4 weeks
 - $L > 2 \times 10^{25} \text{ cm}^{-2} \text{s}^{-1}$, ~ $1/20 L_{\text{max}}$
 - Special pp run at √s = 2.76 TeV
 - Important for normalization of PbPb results to pp
 - Azimuthal flow
 - The system produced at the LHC behaves as a very low viscosity fluid (a perfect fluid)

33

. . . .

Charged particle spectra $R_{\Delta\Delta}$: Ratio of Pb-Pb to pp

- The most central events show the greatest suppression
- Pronounced p_T dependence

Electroweak probes

 Rate in agreement with NLO calculations, scaled by number of collisions

J/Ψ suppression

• For central rapidities similar suppression at LHC and RHIC

- Forward rapidities less suppression at LHC than at RHIC
 - N.B. |y| ranges different

 v_{μ} disappearance (Θ_{23})

$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267\Delta m^2 L/E)$

\underline{v}_{τ} appearance (Θ_{23})

OPERA have observed one candidate event with 1.6 expected

 $\tau \rightarrow \rho \nu_{\tau} \\ \rho \rightarrow \pi \pi^0 (\pi^0 \rightarrow \gamma \gamma)$

Decay channel	Number of signal events expected for $Dm^2 = 2.5 \times 10^{-3} eV^2$	
	22.5×10 ¹⁹ p.o.t.	Analysed sample
τ→μ	1.79	0.39
$\tau \rightarrow e$	2.89	0.63
$\tau \rightarrow h$	2.25	0.49
$\tau \rightarrow 3h$	0.71	0.15
Total	7.63	1.65

T2K: 2.5 sigma significanceMINOS: 1.7 sigma

39

v_e disappearance (Θ_{12})

Supra-luminal neutrinos @ OPERA?

Time shift relative to assumption v=c

 $\delta t = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns.}$ Fractional discrepancy with assumption v=c

 $(v-c)/c = \delta t / (TOF'_c - \delta t) = (2.48 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$

- Some results in non-accelerator-based astro-particle physics are covered in the talk by Hitoshi Murayama immediately following this one
 - and are the subject of a dedicated session on Tuesday

Tuesday, October 4, 2011

- 09:00 10:30 Bridges of HEP with Dark Matter & Dark Energy Conveners: P. Drell, D. MacFarlane
 - 09:00 Theoretical Perspectives & Frontiers of Particle Astrophysics 25' Speaker: Jihn Kim (Seoul, Asia)
 - 09:25 **Prospects and Frontiers of Dark Matter** 25' Speaker: Priscilla Cushman (Minnesota, Americas)
 - 09:50 Prospects and Frontiers of Dark Energy 25' Speaker: Ofer Lahav (UC London, Europe)
 - 10:15 Overall discussion 15' 15'

Conclusions, Outlook

- We live in exciting times!
- LHC 2011 has exceeded all expectations!
 - this is great news for our entire field
- Tevatron experiments have now ceased data taking
 - but have much data still to analyze
- Huge number of interesting measurements of which I have had time to describe but a few
- Many 3 sigma effects have come and gone over past 3 years, but some current hints are definitely worth watching:
 - LHC/Tevatron Higgs (discovery or exclusion)
 - Tevatron top A_{FB}
 - DØ like-sign muons A^b_{sl}
 - T2K/MINOS Θ_{13}
 - OPERA supra-luminal v
- Updates on these and a number of other new results should be available next year, e.g.:
 - Θ_{13} from reactors: near+far detectors

Backup slides

Neutrino oscillations
$$|v_l\rangle = \sum_{i=1}^{3} U_{li} |v_i\rangle$$

PMNS neutrino mixing matrix, analogous to CKM matrix for quarks

 $\begin{aligned} \sin^2(2\theta_{12}) &= 0.861^{+0.026}_{-0.022} \\ \Delta m^2_{21} &= (7.59{+}{-}0.21) \times 10^{-5} \text{ eV}^2 \\ \sin^2(2\theta_{23}) &> 0.92 \ ^{[i]} \\ \Delta m^2_{32} &= (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 \\ \sin^2(2\theta_{13}) &< 0.15, \text{ CL} = 90\% \end{aligned}$

Solar reactor LBL (KamLAND) Atmospheric accelerator LBL (MINOS,T2K) reactor SBL (Chooz)

$$P_{ee} = 1 - \sin^2 2\theta \sin^2 \left(\Delta m^2 L / 4 E_{v} \right)$$

5

