

Accelerator Options for Possible Future Neutrino Experiments

Michael S. Zisman

Center for Beam Physics

Accelerator & Fusion Research Division

Lawrence Berkeley National Laboratory

and

U.S. Dept. of Energy
Office of High Energy Physics

ICFA Seminar on Future Perspectives in HEP-Geneva October 5, 2011

Introduction

- Discovery of neutrino oscillations led to strong interest in providing intense beams of accelerator-produced neutrinos
 - such facilities may be able to observe CP violation in the lepton sector
 possibly the reason we're all here
- Several ideas have been proposed for producing the required neutrino beams
 - a Superbeam facility based on the decays of an intense pion beam
 - a Beta Beam facility based on decays of a stored beam of betaunstable ions
 - a Neutrino Factory based on the decays of a stored muon beam
 could serve as precursor to eventual Muon Collider
- · All approaches have their advantages and disadvantages
 - all are challenging...and all will be expensive
 - EUROnu program attempting to compare all options on an equal footing
 a real service to our community!

Physics Context

- Superbeam gives ~98% muon neutrinos ($\pi \to \mu + \nu_{\mu}$)
- · Beta beam gives only electron neutrinos

-
$$^{6}\text{He} \rightarrow ^{6}\text{Li} + e^{-} + \overset{-}{\nu_{e}}$$

- $^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^{+} + \nu_{e}$

Baseline scenario produces low energy neutrinos

 Neutrino Factory beam gives both electron and muon neutrinos

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Rightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$

$$\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Rightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$$

Produces high energy neutrinos, above τ threshold

- · Electron neutrinos are most favorable to do the science
 - $\nu_e \rightarrow \nu_\mu$ oscillations give easily detectable "wrong-sign" μ $_\circ$ do not get ν_e from "conventional" neutrino beam line

Superbeam

- Superbeam facility is a higher-power version of today's neutrino beam facilities
 - approach is evolutionary rather than revolutionary
 - obut nonetheless a big step forward
 - EUROnu version shown here
 - · CERN to Fréjus

4 MW, 5 GeV proton beam

130 km baseline

Beta Beam

- Baseline Beta Beam facility comprises these sections
 - Proton Driver
 - o"light" SPL (≈4 GeV) and upgraded Linac 4
 - ISOL Target
 - spallation neutrons or direct protons
 - Ion Sourcepulsed ECR

Two concepts being explored:

Low-Q version (⁶He, ¹⁸Ne) High-Q version (⁸Li, ⁸B)

- Accelerationlinac, RCS, PS, SPS
- Decay Ring6900 m; 2500 m straight

Neutrino Factory

· Neutrino Factory comprises these sections

- Proton Driver
 - $_{\circ}$ primary beam on production target \Rightarrow HARP
- Target, Capture, and Decay $_{\circ}$ create π ; decay into $\mu \Rightarrow \text{MERIT}$
- Bunching and Phase Rotation $_{\circ}$ reduce ΔE of bunch
- Cooling
 - oreduce transverse emittance
 - \Rightarrow MICE
- Acceleration
 - $_{\circ}$ 130 MeV \rightarrow 20-40 GeV with RLAs or FFAGs \Rightarrow EMMA
- Decay Ring
 - store for ~1000 turns;long straights

Low Energy Neutrino Factory

- · Alternative 4 GeV NF design being explored at Fermilab
 - motivated by
 - o expectation of reduced facility cost
 - energy well matched to Fermilab-Homestake baseline
 - detector concept (magnetized TASD)
 capable of required performance at chosen energy
 - ingredients same as IDS-NF design...but fewer of them
 - oless acceleration
 - smaller decay ring
 - o single baseline

Commonality

- · A common feature of all future neutrino facilities is the requirement for substantially increased quantity of data
 - ⇒ need for intense particle sources
 - ⇒ need for very large detectors
- · Both needs represent major technical challenges
 - must extend today's state-of-the-art by factor of 5-10
- · All current approaches to giving the requisite number of neutrinos rely on production of secondary, or even tertiary, beam

Strengths

Superbeam

- closest to today's technology
- likely to be the least expensive (≠ inexpensive!)

· Beta Beam

- ability to make use of CERN infrastructure
- potential synergy with nuclear physics interests on isotope production
- clean beam (only electron neutrinos)
 - orequires combination with Superbeam to fully extract the physics

· Neutrino Factory

- best sensitivity (⇒ best physics reach)
- both electron and muon neutrino beams available simultaneously
- synergy with intense muon and/or muon collider programs (staging possible)

Technical Challenges-SB

- · Challenges related mainly to intensity requirement
 - target capable of handling 4 MW of protons
 - horn capable of handling 4 MW of protons
 and operating at high repetition rate (50 Hz)
 - good charge selection (beam purity)
- · Target resides in close proximity to horn
 - spatial constraints favor solid, or perhaps powder target
 materials compatibility issues make Hg target impractical
 - cooling is difficult
 - high radiation environment
 - oneed to repair is inevitable
 - hands-on repair will not be possible

Proposed Approach-SB

- · Recent studies (Zito et al., EUROnu WP2) based on
 - low- or medium-Z target
 - multiple targets + horns
 - oreduces power deposition
 - 4 MW \rightarrow 4 x 1 MW
 - oreduces repetition-rate requirement
 - 50 Hz \rightarrow 4 x 12.5 Hz
 - single-horn optics (no reflector)
 - optimized horn shape

Challenges of more complex proton beam optics and horn repair/replacement remain

Pebble-bed target

BB Technical Challenges (1)

- Production of the required ion species at the required intensity
 - requires production, transport to ion source, ionization, bunching
 - target's ability to accommodate primary beam is sometimes limited to a few hundred kW
 - looks okay for ⁶He; ¹⁸Ne is challenging, but appears possible with ¹⁹F(p,2n)

 $_{\circ}$ higher Z atoms are produced in multiple charge states, with the peak at

25-30% of the total intensity

Molten NaF loop for ¹⁸Ne production Test experiment approved at CERN

BB Technical Challenges (2)

- · Collective effects (Hansen, Chance)
 - transverse mode coupling in Decay Ring presently limits intensities
 - exploring modified ring designs to mitigate effect
 - low duty factor (0.5%) exacerbates this difficulty
 - SPS may also present challenges
 - work to understand this in progress

							4	A. Donini, Summary on Beta-Beams
	0 5250 1/16	120 (agree)		Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$
	Bunch Intensity Limit, N _b th			⁶ He	$\Phi_0 = 2.9$	5	5×10^{-4}	No Sensitivity
	[el2]	[Nbnom]	[Nbnom]	¹⁸ Ne	$\Phi_0 = 1.1$	5		
	[]	Freb 1	[.40]	Li	$\Phi_0 \times 5$	5	2×10^{-4}	8×10^{-3}
¹⁸ Ne	1.2	0.3	0.6	⁸ B	$\Phi_0 \times 5$	5		
	1 . 4	0.5	0.0	⁶ He	$\bar{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity
⁶ He	10	2.1	1.0	18Ne	$\Phi_0/2$	8 5		Section 2000 DAY
116	10	2.1	1.0	⁸ Li	$\Phi_0 \times 2$	5	7×10^{-4}	1.5×10^{-2}
8 B	2.1	0.2	0.6	(8B	$\Phi_0 imes 2$	5		
-	2.1	0.2	0.0		Manas I.	D :		r =\10-4
⁸ Li	5.9	0.2	0.6	 Note; In Donini's table SF = 10-4 while we are using SF = 5⋅10-3 				

NF Technical Challenges (1)

- Muons created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - low production rate
 - oneed target that can tolerate multi-MW beam
 - large energy spread and transverse phase space
 - oneed emittance cooling
 - high-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 µs at rest)
 - puts premium on rapid beam manipulations
 - high-gradient RF cavities (in magnetic field for cooling)
 - opresently untested ionization cooling technique
 - ofast acceleration system

NF Technical Challenges (2)

·Target

- favored target concept based on Hg jet in 20-T solenoid
 - ojet velocity of ~20 m/s establishes "new" target each beam pulse
 - magnet shielding is daunting, but appears manageable

— alternative approaches (powder or solid targets) also being pursued within

EUROnu

NF Technical Challenges (3)

- · Normal conducting RF in magnetic field
 - cooling channel requires this
 - 805-MHz experiments indicate substantial degradation of gradient in such conditions
 - initial 201-MHz tests show similar behavior (coupler issue?)
 - ogas-filled cavities avoid performance degradation in magnetic field
 - effects of intense ionizing radiation traversing gas now under study
 - + first indications are that beam loading is severe

R&D Activities

- To transform challenges to opportunities, worldwide R&D efforts are under way
 - of most interest in this context are those of EUROnu and IDS-NF
 U.S. contributions to these studies via MAP

Superbeam

- main items are target and horn
 proton beam delivery also needs attention
- · Beta Beam
 - main items are ion production, collective effects, and beam loss issues
- · Neutrino Factory
 - main items are target, cooling (MICE), and RF (MuCool)
 see S. Henderson talk later today

Summary

- Substantial progress being made toward designs of accelerator-based neutrino facilities to study CP violation in the lepton sector
 - challenges are understood and being overcome
- · Work extends state-of-the-art in accelerator science
 - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- Need to guard against putative project timescales (e.g., "far-future") becoming self-fulfilling prophecy
 - should consider merits of revolutionary vs. evolutionary approach
 going slowly is not usually cheaper
- Thanks to all my accelerator colleagues in EUROnu, IDS-NF, MAP, and MICE for sharing both their expertise and their enthusiasm

Final Thought

Paper studies alone are *not enough*

We need to build and test things!

Backups

Ionization Cooling (1)

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/dx) reduces p_x , p_y , p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x,y}/p_z$

Ionization Cooling (2)

- There is also a heating term
 - for SR it is quantum excitation
 - for ionization cooling it is multiple scattering

 Balance between heating and cooling gives equilibrium emittance

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{\beta^2} \left| \frac{dE_{\mu}}{ds} \right| \frac{\varepsilon_N}{E_{\mu}} + \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2 \,\beta^3 E_{\mu} m_{\mu} X_0}$$

Cooling Heating

$$\varepsilon_{x,N,equil.} = \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta \, m_{\mu} \, X_0 \left| \frac{dE_{\mu}}{ds} \right|}$$

— prefer low β_1 (strong focusing), large X_0 and dE/ds (H₂ is best)

MICE

- ·Neutrino Factory ($\approx 10^{21} \ v_e$ aimed at far detector per 10^7 -s year) or Muon Collider depends on ionization cooling
 - straightforward physics but not experimentally demonstrated
 - facility will be expensive (O(1B\$)), so prudence dictates a demonstration of the key principle
- · Cooling demonstration aims to:
 - design, engineer, and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
 - place this apparatus in a muon beam and measure its performance in a variety of modes of operation and beam conditions
- · Another key aim:
 - show that design tools (simulation codes) agree with experiment
 gives confidence that we can optimize design of an actual facility
- · Getting the components fabricated and operating properly teaches us about both the cost and complexity of a muon cooling channel
 - measuring the "expected" cooling will serve as a proof of principle for the ionization cooling technique

System Description

- MICE includes one cell of the FS2 cooling channel
 - three Focus Coil (FC) modules with absorbers (LH2 or solid)
 - two RF-Coupling Coil (RFCC) modules (4 cavities per module)
- · Along with two Spectrometer Solenoids with scintillating fiber tracking detectors
 - plus other detectors for confirming particle ID and timing (determining phase wrt RF and measuring longitudinal emittance)
 - o TOF, Cherenkov, Calorimeter

MICE Contributors

· Many international partners contributing

Status of MICE

- · Beam line commissioned
 - paper describing results in preparation
- · Civil engineering nearly completed
 - main "missing piece" is RF infrastructure for Steps 5 and 6
 installation of RF power sources and connection of RF power to cavities

· Awaiting completion and installation of cooling channel

hardware

Cooling Channel Components

· All cooling channel components are now in production

Spectrometer Solenoid (Wang NMR)

CC completed coil (Qi Huan Co.)

CC winding (Qi Huan Co.)

FC (Tesla Eng., Ltd.)

Absorber window (U-Miss)

Cavity at LBNL

Absorber