

Specifications for CERN Nb-Ti wiggler and SC wiggler activity planning

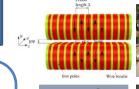
Daniel Schoerling November 15th, 2010 CERN

Nb₃Sn Technology

Nb-Ti Technology

Short Model

Conceptual Design for


2-Period Short Model,

successful tested at CERN

in mirror configuration

Short Model at BINP

successful tested

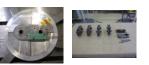
CDR

First Tests Short Model -5 Test Coils Heat Treatm •One Vertica ready to be •2-period wig full configur

Small

Prototype

Full-Scale

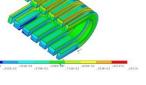

Prototype

• 5 Test Coils for Insulation and Heat Treatment tests

• One Vertical Racetrack Coil ready to be tested

• 2-period wiggler in mirror and full configuration (planned)

•Modules, Design and Test •Joint Testing •Field Quality Measurements at CASPER at ANKA



Modules, Design and Test
Joint Testing

• Field Quality Measurements at CASPER at ANKA

• Full Scale Nb₃Sn Prototype with cryogenics to be tested at ANKA

• Design and manufacturing at CERN but with synergies from Nb-Ti wiggler!

Full-Scale Prototype

First Tests

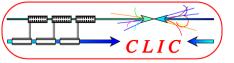
Short

Model


Full Scale Nb-Ti Prototype with cryogenics to be tested within the collaboration framework with ANKA, Karlsruhe, Germany
Design: Collaboration of ANKA, BINP and CERN.
Manufacturing at BINP

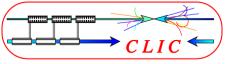
SCU14 in ANKA

DEPENDING ON APPROVED FUNDING!


TDR

Nb-Ti Prototype Purpose and Strategy

- Small workshop on 3rd December will be the kick-off of a new collaboration between BINP, CERN, and KIT to resolve all technological challenges of CLIC damping wigglers. It will address:
 - SC coil design
 - Magnetic measurements
 - Quench protection and magnet protection
 - Cooling (Cryogenic liquids and cryostat)
 - Vacuum
 - Coating
 - Current leads, etc.
- Vertical Racetrack Coils: 1) Mass production possible, 2) Winding scheme ideal for Nb₃Sn because of favourable force distribution
- Cryostat can be opened non-destructively: Nb-Ti coils will be tested first. When, coils can be exchanged with Nb₃Sn coils, whole infrastructure will be Nb₃Sn ready (current leads and PC up to 1100 A, etc), almost no extra investment for testing the Nb₃Sn coils. 3



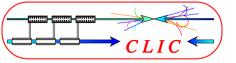
Nb-Ti Prototype

• Tentative Parameters:


Vacuum-Gap	13 mm
Magnet-Gap	18 mm
Period	56 mm
Maximal magnetic field	3.6 T
Operating magnetic field	3 T
I _{op} /I _c	83%
Inductance	1.6 H
Stored Energy at 600 A	250 kJ

Nb-Ti Prototype Tentative Schedule

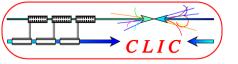
2010	December	Conceptual Design of ANKA Wiggler	
2011	February	Contract signed	
	May	Technical review of manufacturing drawings	
	October	Manufacturing of parts are completed	
2012	March	SC coils are wound, potted and assembled	
	May	SC coils are trained, and first magnetic acceptance test performed. Cryostat, beam-pipe and auxilaries are ready	
	August	SC Coils are assembled in cryostat, magnetic acceptance test at BINP performed	
	September	Wiggler at ANKA, cryoplant ready	
	October	Wiggler installed in ANKA	



Nb-Ti Prototype Tentative Budget

• The costs are based on estimates from the corresponding experts at CERN and BINP (± 20%):

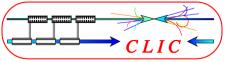
Budget (kCHF)	2011	2012
Cryoplant	400	400
Cryo-Magnet including beam-pipe, PC, current leads, measurements at BINP	390	390
QPS	30	0
Infrastructure ANKA	70	100
Misc (Travel)	25	25
TOTAL	915	915
ANKA Participation	300	300
CERN Participation	615	615



Nb₃Sn Advanced Design

- In parallel with the Nb-Ti wiggler prototype we will advance with the Nb₃Sn design, first tests have shown the feasibility of Nb₃Sn.
- Nb₃Sn technology for wiggler is less demanding than for accelerator magnets (inner triplets, LHeC, 11 T dipole projects) because of modular geometry, force distribution, and short unit lengths of wire.

Open issues:


- Nb₃Sn short model testing (unavailability of Block 4 until April 2011).
- For a first full prototype around 20 km strand are needed (approx. 200 kCHF). Strand procurement has a long lead time; first discussions were made for wire procurement. Funding has to be ensured.
- Nb_3Sn prototype design is planned to be finished by the end of 2011, but production delay due to LHC consolidation in 2012.

Nb₃Sn Wiggler Budget

Budget (kCHF)	2010	2011	2012	2013
Material	20	220	60	30
Design Office	18	45	55	25
Workshop	32	30	50	80
FSU	50	50	50	100
Misc (Travel)	24	5	5	25
TOTAL	144	350	220	260

Total CERN/CLIC Damping Wiggler Budget

Budget (kCHF)	2010	2011	2012	2013
Nb-Ti wiggler	0	615	615	0
Nb ₃ Sn wiggler (relies on Nb-Ti spending)	144	350	220	260
TOTAL	144	965	835	260