

Boundary Conditions for the Test of a CLIC Damping Wiggler at ANKA

Axel Bernhard

Laboratory for Applications of Synchrotron Radiation (LAS)

CLICDW as source for ANKA-IMAGE

Functional requirements of the ANKA IMAGE beamline

Radiation spectrum:

Critical energy: $E_c \ge 60 \text{ keV}$ \Rightarrow Field amplitude: $\tilde{B}_{\gamma} \ge 3 \text{ T}$

• Optics: Beam splitter \Rightarrow min. opening angle of radiation cone:

$$\psi_{\rm rms} \sim 3 \, {
m mrad}$$

 $\Rightarrow K \sim 15$
 $\Lambda_{\rm W}(3 \, {
m T}) \sim 50 \, {
m mm}$

Heat load:

 $P_0 \leq 12\,\mathrm{kW}$

2 CERN-KIT collaboration meeting, Nov 15th 2010

Axel Bernhard, Boundary Conditions for the Test of a CLIC Damping Wiggler at ANKA

CLICDW as source for ANKA-IMAGE

Boundary conditions imposed by accelerator

Beam-stay-clear (fixed gap):

 $g_{
m vac} \ge 12\,
m mm$

Length (flange to flange)

$$L \leq 3.5 \,\mathrm{m}$$

Field quality requirements

	vert.	hor.
1st field integral [Tm]	$3\cdot 10^{-5}$	
2nd field integral [Tm ²]	$4\cdot 10^{-4}$	$1 \cdot 10^{-5}$
roll off at $\pm 10 \mathrm{mm}$ [%]	0.5	
max field amp. variation [%]	1	

CLICDW design parameters

Summary of the current status of the technical discussion.

	CERN specs	orig. ANKA specs
SC-Technology Coil Geometry	Nb-Ti vertical racetrack	Nb-Ti (hor. racetrack)
Vacuum Gap	13 mm	$\geq 12 \text{mm}^1$
Magnetic Gap	18 mm	17 mm
Field Amplitude (I_{op})	3 T	≥3 T
$I_{\rm op}/I_{\rm crit}$	83%	85%
Period Length	56 mm	\sim 50 mm
K	16	~15
Cryo Conzept	LHe-Bath Cryostat +He-Cryoplant	LHe-Bath Cryostat +Cryocoolers (closed cylcle)

¹Parameters crucial for the operation at ANKA and utilization as source for IMAGE are highlighted

Timeline

Item	CERN	ANKA Specs	IMAGE
Conceptual Design Review	12/2010		
Contract	02/2011	02/2011	
Prelim. Design Review		03/2011	
Prototype test complete	(09/2010)	05/2011	
Technical Design Review	05/2011	06/2011	
Delivery of frontend optics			01/2012
Installation of beamline			06/2012
Factory acceptance test	08/2012	04/2012	
Delivery to ANKA	10/2012	05/2012	
Installation and final			
acceptance test w/o beam	10/2012	06/2012	

\longrightarrow Remarks by Anke-Susanne Müller and Tilo Baumbach via Webex

Axel Bernhard, Boundary Conditions for the Test of a CLIC Damping Wiggler at ANKA

Legal Boundary Conditions

A few general remarks (details and strategies by Tilo Baumbach)

- KIT is developing superconductive IDs in a strategic partnership with Babcock-Noell, Germany
- This partnership involves non-disclosure-agreements which have to be taken into account when setting up the envisaged collaboration on CLIC damping wigglers
- A separate contract should be concluded for the project of building and testing a Nb-Ti-CLICDW prototype
- A seperate MoU/contract might be required for two-party projects on ID development (Nb₃Sn field measurements, COLDDIAG)
- Further contributions of KIT to CTF3 (Particle tracking, beam dynamcs, CSR studies) may be covered by the general CTF3 MoU
- KIT is interested in continuing the successful collaboration with CERN on the aforementioned subjects. The three different cases, however, should be clearly distiguished in the following discussion