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What does PUMA mean?
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Collaboration

56/04/2022 Vacuum Design for PUMA



Motivation and objectives
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Characterization of neutron halos and 

neutron skins

Objectives [1]:

❑ to provide a new observable for 

radioactive nuclei that characterises the 

neutron to-proton asymmetry of their 

density tail, namely the neutron-to-proton 

annihilation ratio,

❑ to characterize the density tail of known 

halos and neutron skins with this new 

method,

❑ to evidence new proton and neutron 

halos,

❑ to understand the development of 

neutron skins in medium-mass nuclei along 

isotopic chains.



Antiproton annihilation with nuclei

1. Antiprotons captured into 
atomic orbital.

2. Decay into lower atomic 
orbital. X-rays & Auger 
electrons

3. ҧ𝑝 reaches at the density 
tail of nuclei. Annihilate 
with 𝑝 or 𝑛.

4. Annihilation product: 
Multiple pions and 
residual nucleus
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ҧ𝑝 Trip
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ҧ𝑝 Trip
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PUMA Trap
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Trap entrance

Dry 4T Solenoid

Conductance

Pulsed drift tube

Collision trap

Scintillator barrels

Storage trap
TPC chamber 50K shield

4K cryostat

Room temperature 

bore



Pumping concept
❑ Pumping on cold surfaces (4.2K) of gases entering 

the trap

❑ Maximum allowed pressure at the entrance of trap 

 Defined by expansion of gas entering the trap

❑ Only H2 and He pressure will evolve with time 

Sub ML coverage

❑ Small conductance between the entrance and 

collision and storage trap.
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Ref [6]



PUMA vacuum requirements
Storing 109 antiprotons (107 as first 

milestone)

Vacuum level:

❑ Antiproton lifetime (>30 days)

❑ Low Signal background during 

measurement

Specifications:

❑ 𝑇 = 4𝐾

❑ 𝜏 > 200 𝑑𝑎𝑦𝑠

 𝑛𝐻2 ≈ 20 𝑐𝑚−3
→

𝑷 ≈ 𝟏𝟎−𝟏𝟕𝒎𝒃𝒂𝒓
 0.5Hz background (107 ҧ𝑝 in 

collision trap)
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From [2]:

𝜎𝐻2 = 3𝜋𝑎0
2

27.2𝑒𝑉

𝐸𝐶𝑀
𝑎0 = 5.29 ∙ 10−11𝑚

Γ =
1

𝜏
= 𝑛𝐻2𝑣𝑟𝑒𝑙𝜎 𝑣𝑟𝑒𝑙 =

4𝐸𝐶𝑀
𝑚𝑝

𝑛𝐻2 =

6𝜋𝑎0
2 27.2𝑒𝑉

𝑚𝑝

−1

𝜏
= 3.91 ∙ 108𝑠 ∙ 𝑐𝑚−3

1

𝜏(𝑠)

Case: 132Sn:

=10-15 cm2, 105 ions/bunch  100Hz

Case: 11Li:

=10-16 cm2, 200 ions/bunch  0.5Hz



Cross section for other gases (He)

Langevin cross section (ion-atom interaction) [2]:
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𝜎 = 𝜋
2𝛼𝑞𝑒

2

4𝜋𝜖0
2𝐸

𝑣𝐶𝑀 =
2𝐸

𝜇
𝜇 =

𝑚1𝑚2

𝑚1 +𝑚2

1

𝜏
= 𝑛𝑔𝑎𝑠𝜎𝑣𝐶𝑀 = 2𝜋𝑛𝑔𝑎𝑠

2𝛼𝑞𝑒
2

4𝜋𝜖0
2𝜇

𝑛𝑔𝑎𝑠𝜏 =
1

2𝜋

4𝜋𝜖0
2𝜇

2𝛼𝑞𝑒
2

𝛼𝐻2
′ = 0.802 ∙ 10−24𝑐𝑚3

𝛼𝐻𝑒
′ = 0.205 ∙ 10−24𝑐𝑚3

𝑛𝐻2𝜏 = 4500 Τ𝑑 𝑐𝑚3 ⟹ 𝑛𝐻2 ≈ 20 𝑐𝑚−3

𝑛𝐻𝑒𝜏 = 7560 Τ𝑑 𝑐𝑚3 ⟹ 𝑛𝐻𝑒 ≈ 40 𝑐𝑚−3

𝜏 > 200 𝑑
❑ Higher tolerance to He

❑ No hard limit, but implications 

in physics program



Adsorption Isotherm
❑ Low temperature gas adsorption 

modelled with Dubinin–Radushkevich
(DR) isotherm

𝜃 = exp −𝛽 𝑅𝑇 ln
𝑃

𝑃𝑠𝑎𝑡

2

= exp −
𝑇

𝑇0
ln

𝑃

𝑃𝑠𝑎𝑡

2

𝜃 relative surface coverage
𝑇0 adsorption energy (expressed in K)
𝑃𝑠𝑎𝑡 Saturation vapor pressure

❑ Available data
❑ H2 from [3]:

T0=209 K ML=0.645×1014 cm-2

❑ He from [4]:

T0=67.8 K ML= 1.27×1015 cm-2
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Is the extrapolation to very 

low equilibrium pressure 

valid?



COMSOL model
❖ Molecular flow simulation using view factors between elements to simulate the reflexion of molecules

❖ COMSOL allows the study of an evolving wall following the surface coverage

❖ Quasi-static equilibrium

1

𝑃

𝜕𝑃

𝜕𝑡
≪ 𝑠

𝐴

𝑉

ഥ𝑣

4

❖ 2D axisymmetric model

❖ Pressure at the entrance isotropic distribution (no beaming)

❖ DR isotherm model for 4.2K walls in COMSOL

❖ Pumping:

1

4
𝑠0𝑛𝑔𝑎𝑠𝑣𝑡ℎ → 𝜃

❖ Gas Desorption:
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1

4
𝑠0𝑛𝑒𝑞 𝜃 𝑣𝑡ℎ → 𝑛𝑒𝑞(𝜃) = 𝑛𝑠𝑎𝑡 ∙ exp −

𝑇0
𝑇

− ln 𝜃



COMSOL model: PH2=10-10mbar
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❑ Acceptable antiproton lifetime in reservoir trap

❑ Too high density in collision trap (from t=0)

❑ After 100 days degradation of pressure inside PDT



COMSOL model: PH2=10-11mbar
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❑ Acceptable antiproton lifetime in reservoir trap and 

collision trap

❑ After 100 days almost no degradation

❑ Target the lowest achievable pressure at the entrance 

of the trap



COMSOL model: PHe=10-11mbar
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❑ Acceptable antiproton lifetime in reservoir trap and 

collision trap

❑ After 7 days almost no degradation

❑ Acceptable level 2×higher than H2



Comparison with experimental 

results: Alpha experiment 

➢ Trap at 6.6K

➢ Pupstream =7×10-10 mbar

➢ Pdownstream=1×10-9 mbar

➢ After 15 days ҧ𝑝 lifetime estimated in 11600 s 

 3.4×104 cm-3 or 3×10-14 mbar

➢ Model assuming 10×MLs

➢ s=0.3
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Data provided by Andrew 

Jordan Christensen

The model predicts a significant lower lifetime than 

observed  Conservative assumptions  



Outgassing of room temperature 

material
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❑ Insulation vacuum in 

communication with trap 

vacuum.

❑ H2 from room temperature 

materials can be the 

dominant gas source unless 

is pumped

➢ Reduce conductance 

between trap and insulation 

vacuum

➢ Add pumping



Improvements of the trap
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Carbon coating to increase the number 

of sites available ×100 [8]

Conceptual design of cold valve to isolate the 

trap when not in operation



H2 and He isotherm data at low 

pressure
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❑ New setup to measure isotherms 

at low pressure

❑ COMSOL to extract information 

from experiment

❑ Data to validate trap models
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layout
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layout
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ELENA ring

AD ring



layout
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layout
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PUMA experiment

ELENA ring

LNE50

LNE51

Experiment 

transfer line

Ion injection 

lineHandover point

MOFLOW+ to simulate the beam line



LNE51
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Valve between ELENA ring 

and LNE50

Valve interface between 

LNE50 and Gbar

Valve isolating LNE51 from 

LNE50

Valve interface between 

LNE51 and PUMA

>4 m to the trap

NEG coating

NexTorr



PUMA Transfer line
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NEG coating

Ion pumps

NEG cartridges
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layout
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layout
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RCX10
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❑ PUMA transfer line connected to MIRACLS  Handover Point <10-8 mbar

❑ Conductance reduction over ~2 meters, smallest diameter 20 mm. Chicane to 

reduce beaming.

❑ Line still under definition

layout
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❑ MIRACLS: Multi Ion Reflection Apparatus for 

Collinear Laser Spectroscopy

❑ Bunches trapped in MR-ToF MS (Multi-Reflection Time-of-

Flight Mass Spectrometer)

❑ Previous cryogenic Paul Trap for beam cooling with buffer 

gas for optimal longitudinal emittance.

❑ He gas for beam cooling!

❑ 30 keV final energy → Pulsed drift tube between PUMA 

and MIRACLS (<100 eV at PUMA)



❑ Light ions (A<15) can only be 

efficiently cooled down with He 

gas

❑ 0.5% transmission probability 

for He

❑ PUMA beam line at ISOLDE 

still to be optimised.

❑ Minimize the time He is 

injected while not in operation 

(open valve only when 

required)
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layout
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Summary
❑ PUMA will use ҧ𝑝 as a high precision probe. The manipulation and transport of ҧ𝑝

requires extreme low vacuum only achievable with cryo-pumping

❑ COMSOL and MOFLOW models to design the cold trap and the transfer lines

❑ The pressure at the entrance of the trap is crucial to reach the objective →

Extensive use of NEG coatings and strict outgassing budget

❑ Isotherm data at very low pressure required to refine the models

❑ Aspects that require further development:

❑ The trap needs to be loaded with e- using a cold field emission source. At the end of the 

manipulation, they should be extracted out of the trap

❑ Effect of vibrations during transport

❑ PUMA and BASE-STEP are targeting the transport of ҧ𝑝  It will open new 

physics opportunities
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No magnet, no power supply, no special 
transport

0.25 g

Almost 10t, powered by diesel generator, 
big truck

0.0000000000000015 g

6/04/2022 Vacuum Design for PUMA 40

×10-15



Thank you for your attention!!
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Milestones

❑ Install and commissioning 100 kV Pulse Drift Tube at 

ELENA

❑ Build ELENA ҧ𝑝 transfer line and commissioning

❑ Install trap and first ҧ𝑝 trapped

❑ Install ion line at ELENA

❑ First ion trapped and ҧ𝑝 annihilation with stable ions 

(first physics run)

❑ Build ISOLDE transfer line

❑ Transport of ҧ𝑝 to ISOLDE

❑ Physics with unstable ions
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➢ H2 desorption can be 
stimulated by thermal radiation 
[9]

➢ First simulations show <<10-3

mW∙cm-2

➢ Shielding of warm areas is 
mandatory

Influence of thermal radiation
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Detection

❑ Measure the number of 

annihilated neutrons to 

the number of 

annihilated proton

❑ Electric charge 

conservation during the 

annihilation process →

total charge of pions −1 

for a neutron and 0 for 

a proton.
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❑ The flow through orifices in 

molecular flow disturbs the 

speed distribution → No 

longer isotropic.

❑ 𝑃𝑉 = 𝑛𝑅𝑇 doesn’t apply in 

those conditions

❑ It is preferred to use 

density for cryogenic 

systems and/or anisotropic 

distributions 

Density vs Pressure
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