Polarized internal gas targets

P. Lenisa – University of Ferrara and INFN

CERN - 06.04.22

Polarized atomic target and polarimeter

Polarized atomic beam source Components and working principle

Main components:

- Dissociator
- 6-poles
- RF-transitions
- Vacuum system

The HERMES target at HERA (DESY)

- No useful nuclear reactions to determine target polarization.
- Independent target polarimeter demanded.
- Determination of hyperfine state population by:
 - RF transitions
 - 6-pole magnet system

Paolo Lenisa

The PAX target at COSY (FZ-Juelich)

The HERMES storage cell

- Material: 75 μm Al with Drifilm coating (+ ice)
- Size: length: 400mm, elliptical cross section (21 mm x 8.9 mm)
- Working temperature: 100 K (variable 35 K 300 K)

Magnetic holding field

Polarization of mixed states is intensity dependent

- Intensity inhibits spin relaxation due to wall collisions
- Homogeneity inhibits spin relaxation due to beam induced depolarization.

Target polarization (internal target with storage cell)

$$P_T = \alpha_0 \alpha_r P_a + \alpha_0 (1 - \alpha_r) P_m$$

- P_{τ} = total target polarization
- α_0 =atomic fraction in absence of recombination
- α_r =atomic fraction surviving recombination
- $P_a = polarization of atoms$
- P_m = polarization of recombined molecules
- Relation to measured quantities:
 - Sampling corrections:
 - $\alpha_r = c_a \alpha_r^{TGA}$
 - $P_a = C_P P_a^{BRP}$

HERMES performance for D (1999/2000)

Longitudinal Polarization (B=335 mT)

$$P_{+} = 0.845 \pm 0.028$$

HERMES performance for H (2002/03)

HERMES 2002/03 data taking with transverse proton polarization

Top: Degree of dissociation measured by the TGA (α = 1: no molecules);

Bottom: Vector polarization P_z measured by Breit-Rabi-Polarimeter.

Summary of performance for longitudinal running

Target/year	H _{II} (1997)	D _{II} (2000)	
P _t	0.851 ± 0.033	0.845 ± 0.028	
$\Deltalpha_{ extsf{r}}$	0.055	0.003 (absent)	
ΔP_sE	0.035	≤0.001 (absent)	
ΔP_{WD}	0.02	<0.01 (absent)	
ΔP_{BI}	-	-	
t(10 ¹⁴ nucl/cm ²)	0.7	2.1	
FOM (P ² t)	0.5	1.5	

Summary of performance for transverse running

Period	10/2003- 03/2004	04/2004- 07/2004	01/2005- 04/2005	04/2005 11/2005	
cell	1	1 (warm-up) 2		3	
P _t	0.786 ± 0.036	0.721 ±0.059		0.73 ±0.06	
$\Delta \alpha_{r}$	absent	absent	0.24	0.035	
ΔP_{sE}	0.055	0.055	0.055	0.055	
ΔP_{WD}	0.055	0.12	0.17	0.12	
$\Delta P_{\mathtt{BI}}$	<u>≤</u> 0.01	<u>≤</u> 0.01	<u>≤</u> 0.01	<u>≤</u> 0.01	
t(10 ¹⁴ nucl/cm ²)	1.1	1.1	1.1	1.1	
FOM (P2t)	FOM (P2t) 0.7		0.4	0.6	

(Other) operational atomic beam sources

VEPP-3

RHIC

RHIC source

- Designed to optimize intensity (long drift space 1st 2nd 6-poles)
- Clever use of turbo pumps
- Simplified BRP ok for RF- tuning
- No measurement of atomic fraction

VEPP-3 cryogenic source

- SC-magnets increase mag poletip fields (B = 4.8 T, ϕ = 44 mm)
- Requires cryostat and regular surface regeneration
- Requires R&D
- Not suitable for remote operation

Spare slides

A few considerations for the LHC

Space constraints

Polarized Atomic Beam Source Design

(HERMES/PAX atomic beam source)

Requirements:

- MW dissociator
 - no water cooling;
 - reliable operation;
 - possible design of a shorter dissociator?
 - Test bench for velocity distribution characterization required
- Space constraints:
 - Z axis: possible gain compactness at the expense of intensity by removal of transitions after 2nd 6-pole (next slide)
 - Additional space for dissociator insertion and replacement
 - Beam simulations required
 - Radial
 - Services and pumps can be installed in the vertical plane gaining space in the horizontal
- Vacuum: no UHV (HV sufficient); no baking required
 - Turbo pumps
 - HERMES had cryopumps requiring maintenance and space
- Separation valve between ABS and LHC vacuum might be a critical issue
 - To be discussed with accelerator people

HF-transitions and injected polarization

Table 2 Injection modes of the atomic beam source

Gas	HFT (betw. 6-poles)	HFT (after 6-poles)	Inj. states	P_{a}	P_x	P_{zz}	Use
WFT 1-3/M SFT 2-4 / M WFT 1-3 / 1	_	_	[1], [2)	+1	0		Cal
	_	WFT 1-3	[2), [3)	0	-1	_	Data
	_	SFT 2-4	[1], [4]	0	+1	_	Data
	SFT 2-4 / MFT 2-3	_	[1]	+1	+1	_	Cal
	WFT 1-3/MFT 1-3		(2)	+1	-1		Cal
	SFT 2-4 / MFT 2-3	WFT 1-3	(3)	-1	-1	-	Cal
	WFT 1-3 / MFT 1-3	SFT 2-4	4)	-1	+1		Cal
	WFT 1-3, SFT 2-4	_	no state	_	_	_	Cal
SFT: MFT MFT MFT WFT WFT MFT	_		[1] [2] [3)	+1	0	0	Cal
	SFT 2-5	WFT 1-4	(3) (4)	0	-1	+1	Data
	SFT 3-5	SFT 2-6	[1] [6]	0	+1	+1	Data
	MFT 1-4	SFT 3-5	[2) [5)	0	0	-2	Data
	MFT 1-4	SFT 2-6	(3) (6)	0	0	+1	Data
	MFT 3-4, SFT 2-6		[1]	+1	+1	+1	Cal
	WFT 1-4, SFT 2-6		(2)	+1	0	-2	Cal
	WFT 1-4, SFT 3-5		(3)	+1	-1	+1	Cal
	MFT 3-4, SFT 2-6	WFT 1-4	[4]	-1	-1	+1	Cal
	WFT 1-4, SFT 3-5	SFT 3-5	j5)	+1	0	-2	Cal
	WFT 1-4, SFT 2-6	SFT 2-6	(6)	-1	+1	+1	Cal

- HF transitions after 2nd 6-poles double ABS intensity at the expense of longitudinal length
- SFT dual cavity (developed and installed in PAX ABS) can operate both for H and D without requiring hardware access
 - Complicate "remote" tuning -> out of tunnel "engeneering model" ABS to reproduce and cure problems

Polarimeter

Target Gas Analyzer

Measures the atomic vs molecular fraction

Breit-Rabi polarimeter

• Measures the atomic polarization

Vacuum system

Requirements

- Space
 - More compactness in long. and radial plane?
 - Rearrangement of TGA?
 - Beam simulations required
- Vacuum
 - UHV necessary
 - Baking required
 - Turbo pumps + NEG
- Separation valve
 - As for ABS