

Fluorescence Monitors at GSI ---- Lessons learned ----

Collaboration Meeting the 30th of March 2022

Peter Forck & Serban Udrea, GSI

Goal: Preparation of experiments at HEL-test-bench and LHC

Experiences from single pass ion beams:

University München TANDEM: 3 MeV/u < E_{kin} < 5 MeV/u GSI LINAC: 5 MeV/u < E_{kin} < 11 MeV/u GSI synchrotron: 100 MeV/u < E_{kin} < 800 MeV/u

Violence must be rejected

BIF-Monitor: Technical Realization at UNILAC@GSI

Example: BIF station at GSI UNILAC:

➢ Using transition with N₂

$$N_2 + Ion \rightarrow (N_2^+)^* + e^- + Ion \rightarrow N_2^+ + \gamma + e^- + Ion$$

Insertion length 25 cm

2 x image intensified CCD cameras

Optics with reproduction scale typ. 0.2 mm/pixel

- Gas inlet + gauge, pneumatic actuator for calibration
- Advantage: Compact insertion, resolution adaptable of-the-shelf components

C. Andre (GSI) et al., Proc. IBIC 2014

CIGIAER NR? CIGIAER NR CIGI

Beam: Ar¹⁰⁺@4.7 MeV/u, *I*=2.5 mA \Leftrightarrow 10¹¹ ppp, *p*=10⁻⁵mbar aver. pixel int.

Peter Forck, Collaboration Meeting 30th March 2022

Fluorescence Monitors at GSI: Lessons learned

For N₂ working gas the spectra for different ion impact is measured: **Fluorescent transitions:**

 $N_2 + ion \rightarrow (N_2^+)^* + e^- + ion \rightarrow N_2^+ + \gamma + e^- + ion$ $N_{2}^{+}: B^{2}\Sigma_{u}^{+}(v'') \rightarrow X^{2}\Sigma_{g}^{+}(v'),$ λ = 391, 427 & 471 nm, Vitrogen spectra [arbitrary units] life time $\tau \approx 60$ ns GSI UNIAC: ion energy \approx 5 MeV/u **Results:**

- Comparable spectra for all ions
- > Small modification due to N_2^+ dissociation by heavy ion impact
- \Rightarrow Stable operation with

constant spectrum for highly ionized ions

C. Andre (GSI) et al., Proc. IBIC 2014

Nitrogen Molecule Spectra with Ion Impact: Cross Section

N₂ as working gas for process:

$$N_2 + ion \rightarrow (N_2^+)^* + e^- + ion$$

 $\rightarrow N_2^+ + \gamma + e^- + ion$

Result for cross section:

- ► lonic lines: B²Σ_u⁺ (v''=0) → X²Σ_g⁺ (v'=0) ⇒ Constant σ over entire range
- ➢ Neutral lines: C³Π_u(v''=0) → B³Π_g(v'=0) Increasing σ as generated by secondary electrons only (spin forbidden by proton impact)

Estimation of cross section:

- > lonic: $\sigma_s(2.7 \text{ MeV/u}) = 4 \cdot 10^{-16} \text{ cm}^2$
 - \Rightarrow Proton $\sigma_p(2.7 \text{MeV/u}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 6.3 \cdot 10^{-18} \text{ cm}^2$
 - \Rightarrow Bethe-Bloch scaling σ_p (7TeV) = 0.03 $\cdot \sigma_p$ (2.7MeV) = 1.8 $\cdot 10^{-19}$ cm²

Serban's estimation: $\sigma_p(7\text{TeV}) = 3.7 \cdot 10^{-20} \text{ cm}^2 \Rightarrow \text{factor 5 too large}$

> Neutral: Can not be excited by proton & ion impact!

BIF Monitor: Different Gas Pressures and Profile Width

Observation: Trans. of ionic states e.g. $N_2^+ \rightarrow$ profile width independent on pressure Trans. of neutral states e.g. $N_2 \rightarrow$ width strongly dependent on pressure! \succ lonic transitions λ =391 nm: $N_2 + ion \rightarrow (N_2^+)^* + e^- + ion \rightarrow N_2^+ + \gamma + e^- + ion$ 0.06 0.05 $N_2^+ @391nm: B^2\Sigma_u^+(v''=0) \rightarrow X^2\Sigma_g^+(v'=0)$ 0.04 N. 0.03 0.02 large σ for ion-excitation, low for e⁻ ^{0,00} 1.00 **N**₂⁺ B->X (0-0) @ 391 nm N, C->B (0-0) @ 337 nm 1E-3 mba 3E-3 mbai intensity [a.u.] 0'20 IE-2 mbai -0.0 3E-2 mbai pixe IE-1 mbai -0.02 2.0 3E-1 mbai _{rms} [mm] 1F+0 mba 3E+0 mbar 1E+1 mba 0,25 N₂ 3F+1 mba 1.5 0,00 image width ഗ 2 10 12 14 2 8 12 8 N_2 trans. vertical beam profile [mm] vertical beam profile [mm] @337 nm 1.0 \succ Neutral transitions λ =337 nm: p = 30 mbar $N_2 + e^- \rightarrow (N_2)^* + e^- \rightarrow N_2 + \gamma + e^-$ 0.5 N₂ @337nm: C³ Π_{u} (v''=0) → B³ Π_{g} (v'=0) N₂+ trans.@391 nm large σ of e⁻ excitation., low for ions 0.0 at $p \approx 0.1 \text{ mbar} \rightarrow \text{free mean path} \approx 1 \text{ cm}!$ 10⁻³ 10⁻² 10⁻¹ 10° 10 10^{2} N₂ equiv. pressure [mbar] **Result:** Save operation if $p < 10^{-3}$ mbar F. Becker et al., IPAC'12 &HB'12

Neon Spectra with Sulfur Ion Impact at 3.1 MeV/u

Result for cross section:

- > Ne⁺ : σ is independent on pressure
- Ne & high pressure p > 10⁻² mbar: caused be secondary electrons
- Ne & low pressure *p* < 10⁻³ mbar:
 σ is constant
 i.e. reflects correct beam profile
- > Absolute systematic error $\Delta \sigma_{sys}$ = 50 %

Estimation of cross section for neutral Ne:

- Sulfur $_{16}S^{8+}$ **no** Titanium foil $\sigma_{s}(2.7 \text{MeV/u}) = 2.5 \cdot 10^{-17} \text{ cm}^{2}$
- > $dE/dx \propto q^2$ scaling with charge state q = 8 (Bethe-Bloch scaling)
 - \Rightarrow Proton $\sigma_p(2.7 \text{MeV}) = \sigma_s(2.7 \text{MeV/u}) / q^2 = 3.9 \cdot 10^{-19} \text{ cm}^2$
- Energy loss from 2.7 MeV to 7 TeV by factor 0.03, but non Bethe-Bloch scaling for neutrals
 - \Rightarrow Bethe-Bloch scaling σ_p (7TeV) = 0.03 · σ_p (2.7MeV) = 1.2 · 10⁻²⁰ cm²
 - \Rightarrow Bethe-Born scaling σ_p (7TeV) = 0.007 $\cdot \sigma_p$ (2.7MeV) = 2.8 $\cdot 10^{-21}$ cm²
- > Serban's estimation: $\sigma_p(7\text{TeV}) = 4.7 \cdot 10^{-22} \text{ cm}^2 \Rightarrow \text{factor } 6 \text{ too large (25 for B-Bloch)}$

Peter Forck, Collaboration Meeting 30th March 2022

Pressure dependent Profile Reading

Task: To which pressure the methods delivers

a correct profile reproduction?

Process:

- **1.** Direct excitation e.g.: $N_2 + ion \rightarrow (N_2^+)^* + e^- + ion$
- **2. In**direct processes e.g.: $N_2 + e^- \rightarrow (N_2)^* + e^- \rightarrow N_2 + \gamma + e^-$
- \Rightarrow No all spectral lines are correct

Results: Possible misreading for neutral lines

➤ avoid 10^{-2} mbar

chose either $r_{mfp} >> r_{beam}$ or $r_{mfp} << r_{beam}$

use transition of the charged specious

Beam: S at 3 MeV/u at TU-München TANDEM

Distortions by Depth-of-focus, Space Charge and Curtain Thickness 🗳 🖬 🖬

Task: The depth-of-focus must fit to the beam size
Method: Determination of beam size
Care: Radial beam density distribution
Additionally: Vignetting → increase for open iris

Simulations by <u>Ondrej Sedlacek</u> (using GSI-code) Smearing due to finite curtain size:

Thickness smaller than required resolution

Distortion due to space charge:

For N_2 gas (fluorescence from N_2^+) not for Ne **Care**: Non-uniform electron-beam distribution

For first prove-of-principle:

Thick curtain for large signal strength

Parameter:

Gas N_2^+ with lifetime τ =60 ns Curtain: 1 mm thick curtain Electron beam 5 A, mag. B=4 T

O. Sedlacek et al, IPAC2021

Fluorescence Monitors at GSI: Lessons learned

Energy Scaling for N₂ Fluorescence and Background

- Signal proportional to energy loss
- > Suited for single pass with $\geq 10^{10}$ ions/pulse
- ▶ Background prop. $E_{kin}^2 \Rightarrow$ shielding required
- \blacktriangleright Background outside of viewport \Rightarrow not optical photons

F. Becker (GSI) et al., Proc. DIPAC'07

Neutron creation by nuclear interactions Refection at concrete wall, i.e. 'bouncing around' \Rightarrow Long 'detention' in tunnel; here $\approx 1 \text{ ms}$ Mitigation:

Image intensifier gate only during beam **However**, at LHC not applicable

Comparison PHITS & plastic scintillator:

(II comparable background decay): Beam: Xe⁴⁸⁺ @200MeV/u stopped in dump

O. Sedlacek et al, IPAC2021

Neutron flux by PHITS:

PHITS:

Particle and Heavy Ion Transport code System (comparable to FLUKA)

Only relevant at LHC; no neutrons at HEL

Proton creation by nuclear spallation reaction:

Fast proton emitted in beam direction

Image Intensifier window with photo cathode

- ightarrow Cherencov radiation in glass
- \rightarrow Sometimes 'comets' appeared

for parallel orientation of Image Intensifier

Mitigation:

- Shielding by lead between vacuum window
- Image Intensifier 90° rotation of II plane

Neutron flux by PHITS:

Beam: Xe⁴⁸⁺ @200MeV/u stopped in dump

Only relevant at LHC; no fast protons at HEL

Peter Forck, Collaboration Meeting 30th March 2022

Image Intensifier gate:

- Voltage photo cathode ↔ MCP follows gate TTL-gate,
- input $\approx 1 \text{ M}\Omega$ impedance
- Maximum trigger rate 10 kHz

For long cable > 20 m (at LHC):

- \Rightarrow External 50 Ω termination via T-piece **required** & 50 Ω TTL driver electronics
- Test: Background contribution must scale with gate length Image Intensifier gate and camera exposure
- Il gate only if beam is present (HEL is pulsed, LHC quasi cw operation)
- Camera exposure only slightly longer than II gate

Image Intensifier operation:

- Avoid high illumination
- Amplification by MCP voltage: Start with low value increase only to required voltage

Background:

- \blacktriangleright Optical photons though viewport (\rightarrow blackening methods detailed investigated by CERN)
- Homogeneous distributed background by ionizing radiation (i.e. also outside of viewport)

Conclusion

Working gas:

 N_2 and Ne properties fairly well investigated (more light from N_2)

- experimental knowledge for low electron currents at CI
- Scaling with one order of magnitude for LHC beams

Proposal: If possible, start with N₂ at HEL and large skimmer ('first we have to see a signal...')

Image intensifier, optics and camera:

Robust and well designed system, remote controlled at LHC, accessible at HEL test-bench **Proposal:** Image Intensifier gate and camera exposure only during beam presence

LHC test operation:

Background measurement urgently required, dependence on optical filters

HEL test bench:

High beam current, high magnetic field, 'exotic' beam shape \Rightarrow surprises possible High magnetic field and space charge: \Rightarrow surprises due to captured residual gas electrons or ion

Thank you for your attention! Questions and comments?

Backup slide

BIF-Monitor: N₂ Scaling for different lons

TK6 U 28+

TK6 U 39+

🔷 TK6 Ta 62+

TK6 Ta 62+ TK6 Ta 62+

TK6 Ta 24+

🔶 TK6 Ta 24+

TK6 Ni 26+ TK6 Ni 26+

TK6 Ni 26+

TK2 U 28+ TK2 Ni 14+

UA4 U 28+ UA4 Ni 14+ UA4 Ni 14+

★ UA4 Ar 10+

70

60

For N₂ working gas the spectra for different ion impact is measured:

Scaling for different ions A^{q+} beams: **Ideally: constant Result: Variation by factor 3** GSI-UNILAC: 5 to 11 MeV/u 60 Care: recording within several years (normalized) 50 \Rightarrow Systematic errors possible 40 > Basically $\frac{dE}{dx}$ (ion)= $q^2 \cdot \frac{dE}{dx}$ (proton) ය 30 z Experiment: At GSI LINAC with 11.4 MeV/u \Rightarrow scaling confirmed within a factor of 3 20 $N_{EC} \propto \frac{1}{a^2} \cdot \frac{dE}{dx}$ (ion) $\propto \frac{dE}{dx}$ (proton) 10 20 30 40 50 10 Ion Charge at 11.4 MeV/u (normalized for g=1) \Rightarrow Bethe-Bloch scaling is reasonable

C. Andre (GSI) et al., Proc. IBIC 2014

Pressure -Variation by 6 Orders of Magnituden

BIF-Monitor: Spectroscopy & Fluorescence Yield

Peter Forck, Collaboration Meeting 30th March 2022

BIF-Monitor: Spectroscopy & Profile Reading

Peter Forck, Collaboration Meeting 30th March 2022

Beam: S^{6+} at 5.16 MeV/u, $p_{N2} = 10^{-3}$ mbar