Generalized Machine Learning Quantization Implementation for High Level Synthesis Targeting FPGAs Matthew Trahms - 15th March, 2022

Outline

- The Large Hadron Collider
- Particle Tracking
- hls4ml
- FINN and Brevitas
- Particle Tracking GNN Quantization Aware Training
- FINN Collaboration and QONNX
- QONNX Ingest into hls4ml
- Future Work
- Acknowledgements

The Large Hadron Collider (LHC)

- Large particle accelerator in Europe
 - Accelerate particles near the speed of light
 - Collisions split atoms into subatomic particles
 - Sensors track particle interactions
- Generates large quantities of data
 - 1 petabyte of data / second while operating
 - Data management challenge
 - Set to increase in the future with the high luminosity upgrade
 - Multiple different experiments
 - ATLAS
 - CMS

Fig 1. The ATLAS Detector (atlas.cern)

Particle Tracking

- Need to track individual particles from collisions in order to make observations
 - Large number of collisions happening in a small space
 - Need to accurately separate particle paths
 - Non-machine learning algorithm algorithm scales poorly with increasing number of particles
 - Higher luminosity = more particles

Fig. 2: Possible particle tracks. Blue edges are correct edges while black edges were potential particle paths based on detections. (A. Elabd et al)

Particle Tracking Graph Neural Network (GNN)

- Possible particle tracks represented as directional acyclic graphs
 - Nodes = locations where particles were detected
 - Edges = possible particle paths, determined by distance
- Graph Neural Nets (GNNs)
 transform graphs
 - Interaction networks determine true edges, or the actual path of the particle
 - Able to match performance of non-machine learning algorithm and scales with luminosity

Fig. 3: The structure of an Interaction Network Notice how the graph is transformed at the output (A. Elabd et al)

hls4ml

- Machine learning algorithms work as alternatives for high energy physics applications
 - Need high throughput
 - Field Programmable Gate Array (FPGA):
 Reprogrammable logic that can be used to implement digital algorithms
 - Generally able to achieve higher throughput than acceleration on CPUs

Fig. 4: The hls4ml flow to generate a hardware implementation of a machine learning model (Luca Carloni et al)

FINN and Brevitas

- FINN: hIs4ml alternative developed by Xilinx Research
 - Targets extremely low bit width deployment
 - Low latency, high throughput
 - Brevitas: Quantization Aware Training (QAT) library developed for FINN
 - QAT allows for high accuracy at low bit widths compared to post training quantization (PTQ)
 - Based on Pytorch
 - Uses ONNX graphs with custom nodes for internal representation

Fig. 5: The FINN Flow, from Brevitas export to deployment (xilinx.github.io)

Tracking GNN Quantization Aware Training

- FPGA acceleration of particle tracking GNN
 - Need for high throughput
 - Network originally implemented in Pytorch
 - Only option for hls4ml is PTQ
 - Loss in accuracy
 - Re-implemented and trained network in Brevitas
 - Layer by layer replacement
 - Retrained on same dataset
 - Achieved near equivalent performance
 - AUC: Area under ROC curve
 - Compares true positive rate and false positive rate

Fig. 6: Tracking GNN QAT Results (A. Elabd et al)

FINN Collaboration and QONNX

- FINN and hls4ml accomplish similar tasks
 - Cross organizational collaboration develop a shared model format that can be used by hls4ml and FINN
 - Generalized version of FINN ONNX
 - Extends the ONNX framework to add quant nodes
 - Represents either weight or input quantization
 - Interoperability means that users can choose the solution that works better for their purposes

Fig. 7: Visual representation of a QONNX network (netron.app)

QONNX Ingest Into hls4ml

- Need to convert QONNX to HLSModel to synthesize in hls4ml
 - QONNX quant nodes specify quantization
 - HLSModel layers have quantization attributes built into layers
 - Set of transformations
 - Ingest complete structure into HLSModel
 - Incorporate quantizations from Quant nodes into layers
 - Remove Quant nodes

Fig. 8: Process to incorporate QONNX quantizations into HLSModel

Future Work

- QONNX ingest into hls4ml needs further work
 - Bugs with convolutional models and different model architectures
 - Needs to be pulled into the master branch of hls4ml
 - Needs to be converted to the new workflow
 - Need to test latency synthesis implementation
 - Currently testing with resource
 - Need to test with more/different model architectures
- Take a QAT particle tracking GNN through synthesis
 - Only a numerical study currently, need to validate actual performance on an FPGA
- More collaboration between FINN and hls4ml
 - Streamlining in hls4ml
 - MLIR

Acknowledgements

- Dr. Hauck and Dr. Hsu Thank you for everything, working with you for the past three years has had a drastic impact on my life. I don't think I would have pursued my graduate degree if I didn't meet you.
- Dr. Nhan Tran Thank you for helping me spin up into the greater FastML community to make contributions where I could.
- Dr. Jovan Mitrevski and Dr. Sioni Summers It has been a pleasure working with you on the QONNX ingest into hls4ml.
- Dr. Yaman Umuroğlu Thank you for being my point of contact when I was first getting started with FINN.
- Dr. Javier Duarte and Abdelrahman Elabd Thank you for helping me contribute to the GNN tracking investigation
- My parents, Rob and Lisa Trahms Thank you for encouraging and supporting me through this process.
- All my friends and labmates in the audience Thank you for coming here to support me in defense of my thesis.

Questions?