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The Large Hadron Collider (LHC)

l/

e Large particle accelerator in Europe
o Accelerate particles near the speed of light
o Collisions split atoms into subatomic particles
o Sensors track particle interactions

e Generates large quantities of data

o 1 petabyte of data / second while operating
m Data management challenge
m Settoincrease in the future with the high
luminosity upgrade | :
o Multiple different experiments Fig 1. The ATLAS Detector
m ATLAS (atlas.cern)
m CMS




Particle Tracking

e Need to track individual particles from

collisions in order to make observations
o Large number of collisions happening in a

small space
m Need to accurately separate particle
paths

o Non-machine learning algorithm algorithm
scales poorly with increasing number of
particles

m Higher luminosity = more particles
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Fig. 2: Possible particle tracks. Blue edges
are correct edges while black edges were
potential particle paths based on detections.
(A. Elabd et al)



Particle Tracking Graph Neural Network (GNN)

e Possible particle tracks
represented as directional acyclic

graphs
o Nodes = locations where particles were
detected

o Edges = possible particle paths,
determined by distance

e Graph Neural Nets (GNNs)

transform graphs
o Interaction networks determine true
edges, or the actual path of the particle
o Able to match performance of
non-machine learning algorithm and
scales with luminosity
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Fig. 3: The structure of an Interaction Network Notice

how the graph is transformed at the output
(A. Elabd et al)



his4ml

e Machine learning algorithms work as
alternatives for high energy physics

applications
o Need high throughput
o Field Programmable Gate Array (FPGA):
Reprogrammable logic that can be used to
implement digital algorithms
m  Generally able to achieve higher
throughput than acceleration on CPUs

Keras
TensorFlow
PyTorch
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Fig. 4: The hls4ml flow to generate a hardware
implementation of a machine learning model
(Luca Carloni et al)




FINN and Brevitas

e FINN: his4ml alternative developed by
Xilinx Research

(@)

(@)

(@)

Targets extremely low bit width deployment
m Low latency, high throughput
Brevitas: Quantization Aware Training (QAT)
library developed for FINN
m QAT allows for high accuracy at low bit
widths compared to post training
quantization (PTQ)
m Based on Pytorch
Uses ONNX graphs with custom nodes for
internal representation
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Fig. 5: The FINN Flow, from Brevitas export
to deployment
(xilinx.github.io)




Tracking GNN Quantization Aware Training

FPGA acceleration of particle tracking GNN

(@)
(@)

(@)

(@)

Need for high throughput

Network originally implemented in Pytorch

m  Only option for hisdml is PTQ
m Loss in accuracy

Re-implemented and trained network in Brevitas

m Layer by layer replacement
m Retrained on same dataset

Achieved near equivalent performance

m AUC: Area under ROC curve

e Compares true positive rate and false

positive rate

AUC [%]
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Fig. 6: Tracking GNN QAT Results
(A. Elabd et al)



FINN Collaboration and QONNX

e FINN and hls4ml accomplish similar tasks
o Cross organizational collaboration - develop a shared
model format that can be used by hls4ml and FINN
m  Generalized version of FINN ONNX BatchNormalization  Quant

MaxPool

Conv

scale (128 0 (128x128x3x3

m Extends the ONNX framework to add quant nodes o

mean (128

e Represents either weight or input

guantization
o Interoperability means that users can choose the
solution that works better for their purposes

Quant

Fig. 7: Visual representation of a
QONNX network
(netron.app)



QONNX Ingest Into hls4ml

e Need to convert QONNX to

HLSModel to synthesize in hls4ml
o QONNX quant nodes specify
quantization
o HLSModel layers have quantization
attributes built into layers
o Set of transformations
m Ingest complete structure into
HLSModel
m Incorporate quantizations from
Quant nodes into layers
m  Remove Quant nodes
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Fig. 8: Process to incorporate QONNX quantizations
into HLSModel



Future Work

e QONNX ingest into hls4ml needs further work
o  Bugs with convolutional models and different model architectures
o Needs to be pulled into the master branch of his4ml
m Needs to be converted to the new workflow
o Need to test latency synthesis implementation
m Currently testing with resource
o Need to test with more/different model architectures

e Take a QAT particle tracking GNN through synthesis
o  Only a numerical study currently, need to validate actual performance on an FPGA

e More collaboration between FINN and hls4mi

o  Streamlining in hls4ml
o MLIR
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