The Colour Glass Condensate

Edmond Iancu Institut de Physique Théorique de Saclay

- Before we proceed, I would like to thank the organisers for inviting me to give these lectures ...
 - it took me less than one month to prepare them !
- ... and all the previous speakers who introduced/explained related concepts (and made my life easier) ...
 - Raju Venugopalan, Tuomas Lappi, Jani Penttala, Greg Chachamis, Francesco Celiberto, Vadim Guzey
- ... and for (priceless) phenomenology support to
 - Helen Caines, Paul Newman and Thomas Ullrich

Motivation: Some big questions

- What is the structure of a hadron in the high energy limit ?
- Or that of a very large nucleus with mass number $A \gg 1$?
- How to compute QCD scattering when s and/or A are large ?
- Can one rely on perturbation theory ?
- Does QCD approach the unitarity limit at high energy, and how ?
- Are these asymptotic limits relevant for the phenomenology ?

Motivation: ... and some answers

- A high-energy and/or large-A hadron is mostly made with gluons
 - in a special state: the Color Glass Condensate
 - $\bullet\,$ very small longitudinal momentum fractions $x \leq 0.01$
 - large occupation numbers $n \sim 1/lpha_s$
- This form of matter is weakly-coupled, due to its high density
- It controls the hadronic interactions at high energies, due to the large number of its constituents the small-x gluons
- QCD scattering unitarises due to the phenomenon of gluon saturation
- Promising phenomenology at HERA, RHIC, and the LHC
- ... and even stronger expectations for the EIC: the smoking gun ?

- Why small x gluons ?
- Experimental motivation from particle production at RHIC and the LHC
- ... and from DIS structure functions at HERA

- Why small x gluons ?
- Experimental motivation from particle production at RHIC and the LHC
- ... and from DIS structure functions at HERA
- A pretext to introduce some basic (but important) concepts
 - parton picture
 - factorisation
 - (non-linear) quantum evolution
 - gluon saturation

- Why small x gluons ?
- Experimental motivation from particle production at RHIC and the LHC
- ... and from DIS structure functions at HERA
- A pretext to introduce some basic (but important) concepts
 - parton picture
 - factorisation
 - (non-linear) quantum evolution
 - gluon saturation
- Focus on the physical picture:
 - typical scales (and their separation)
 - uncertainty principle
 - oversimplified formulae

- Why small x gluons ?
- Experimental motivation from particle production at RHIC and the LHC
- ... and from DIS structure functions at HERA
- A pretext to introduce some basic (but important) concepts
 - parton picture
 - factorisation
 - (non-linear) quantum evolution
 - gluon saturation
- Focus on the physical picture:
 - typical scales (and their separation)
 - uncertainty principle
 - oversimplified formulae
 - ... and lots of suggestive (?) cartoons !

Pedagogical references

- General introductions to heavy ion collisions
 - QCD in heavy ion collisions, by E. lancu, arXiv:1205.0579
 - Small x physics and RHIC data, by T. Lappi, arXiv:1003.1852
 - Some Aspects of the Theory of Heavy Ion Collisions, by F. Gelis, arXiv:2102.07604
- Review papers & lecture notes on the CGC (not exhaustive):
 - The Color Glass Condensate and High Energy Scattering in QCD, by E. Iancu and R. Venugopalan, arXiv:hep-ph/0303204
 - *The Color Glass Condensate*, by F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, arXiv:1002.0333
 - Color Glass Condensate and Glasma, by F. Gelis, arXiv:1211.3327
 - Initial state and thermalization in the Color Glass Condensate framework, by F. Gelis, arXiv:1508.07974
- A book (more advanced): *Quantum chromodynamics at high energy*, by Yuri V. Kovchegov and Eugene Levin, 2012, 349 pp. (Cambridge Univ Press)

Heavy Ion Collisions @ RHIC & the LHC

Au+Au collisions at RHIC

- Au+Au collision at STAR: longitudinal projection
- $\bullet\,\sim\,7000$ produced particles streaming into the detector
- Collision energy (COM frame) : $\sqrt{s} = 200 \text{ GeV/nucleon}$

Pb+Pb collisions at the LHC

- Pb+Pb collision recorded by ALICE: $\sqrt{s} = 2760$ GeV/nucleon
- About 20,000 hadrons in the detectors
- Compare to $2A \simeq 400$ protons and neutrons in the incoming nuclei

Pb+Pb collisions at the LHC

- Where are all these hadrons coming from ?
- A brief reminder of the parton picture ...
- ... and of the kinematics of high energy collisions

A proton in its rest frame: $P^{\mu} = (M, 0, 0, 0)$

• A proton is a bound state made with 3 valence quarks ...

• ... which interact by exchanging gluons

• The coupling is weak at large transferred momenta, or short distances :

 $Q \sim 1/R \gg \Lambda_{
m QCD} \simeq 200 \; {
m MeV} \Longrightarrow$ perturbative approaches

• ... but it becomes of order 1 at $Q \sim \Lambda_{\rm QCD}$ or $R \sim 1$ fm (proton radius)

A proton in its rest frame: $P^{\mu} = (M, 0, 0, 0)$

• A proton is a bound state made with 3 valence quarks ...

- $\bullet\,$ Virtual fluctuations with typical energies and momenta of order Λ_{QCD}
- Typical lifetimes (duration) $\Delta t \sim 1/\Lambda_{\rm QCD} \sim 1$ fm
- No meaningful concept of "parton"
 - non-perturbative, off-shell, mixing with vacuum fluctuations...

CGC & all that

Infinite momentum frame

• Consider the proton in a boosted frame with large velocity $\beta \simeq 1$

$$P^{\mu} = (E, 0, 0, P) \quad \text{with} \quad E = \frac{M}{\sqrt{1 - \beta^2}} = \sqrt{P^2 + M^2} \simeq P \gg M$$

$$\xrightarrow{\beta}{M} \xrightarrow{\beta}{P \gg M} \xrightarrow{\beta}{P \gg M}$$

• The lifetime of the fluctuations is amplified by Lorentz time dilation:

$$\Delta t_{\rm IMF} = \gamma \, \Delta t_{\rm RF} \sim \frac{\gamma}{\Lambda} \gg \frac{1}{\Lambda}, \qquad \gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$$

• They last much longer than the vacuum fluctuations $\Delta t_{\rm vac} \sim 1/\Lambda$ (the vacuum is boost invariant!)

Infinite momentum frame

• Consider the proton in a boosted frame with large velocity $\beta \simeq 1$

$$P^{\mu} = (E, 0, 0, P) \quad \text{with} \quad E = \frac{M}{\sqrt{1 - \beta^2}} = \sqrt{P^2 + M^2} \simeq P \gg M$$

• The lifetime of the fluctuations is amplified by Lorentz time dilation:

$$\Delta t_{\rm IMF} = \gamma \Delta t_{\rm RF} \sim \frac{\gamma}{\Lambda} \gg \frac{1}{\Lambda}, \qquad \gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$$

- Also much longer than a collision with a projectile: $\Delta t_{\rm IMF} \gg \Delta t_{\rm coll}$
- Long-lifetime fluctuations are nearly on-shell: partons

Parton picture

- Parton energies (p_0) and longitudinal momenta (p_z) are boosted
- Transverse momenta (p_{\perp}) and virtualities $(p^2 \equiv p^{\mu} p_{\mu})$ are boost invariant

 $p^2 = p_0^2 - p_z^2 - p_\perp^2 \sim \Lambda^2$ and $p_\perp \sim \Lambda \implies p_0 \simeq p_z \gg p_\perp$

• $p^{\mu} \simeq (xP, 0, 0, xP) = xP^{\mu}$: partons on-shell & collinear with the proton

- x : longitudinal momentum fraction
- negligible intrinsic transverse momentum p_{\perp}
- $\bullet\,$ Proton wavefunction \approx a Fock state built with partons
- Parton distributions: $f_i(x, Q^2)$, i = quark(q), antiquark(\bar{q}), or gluon(g)
 - also depend upon resolution scale Q^2 , via quantum evolution (DGLAP)
- Collinear factorisation:
 - hadronic cross-sections = PDFs \otimes partonic cross-sections

Intrinsic p_{\perp}

- Intrinsic p_{\perp} : the transverse momentum of a parton from the hadron
- "Non-perturbative but small and negligible" in the parton model: $p_\perp \sim \Lambda$
 - the basis of the collinear factorisation
- ... but this can change ! : quantum fluctuations & high density effects
 - DGLAP and CSS evolutions (Collins, Soper, Sterman)
 - \vartriangleright particle production with net transverse momentum
 - ▷ transverse-momentum dependent (TMD) distributions & factorisation
 - high energy evolution, large nucleus, gluon saturation
 - \rhd dipole picture, $k_T\text{-}\mathsf{factorisation},$ hybride factorisation, CGC
- The intrinsic p_⊥ enters many physical/technical arguments underlying the modern-day parton picture: the parton model + its quantum evolution

The lifetime of a fluctuation (loffe time)

- Even if boosted, parton fluctuations do still have a finite lifetime
- Δt : the lifetime of a quark-gluon fluctuation of a quark inside a hadron
- Maximal transverse separation \sim gluon transverse wavelength $\lambda_{\perp} \sim 1/p_{\perp}$
 - if $\Delta x_{\perp} > \lambda_{\perp} \Longrightarrow$ quantum decoherence: the gluon can be emitted

• Yet another argument: the uncertainty principle: $\Delta t = \frac{1}{\Delta E}$

$$\Delta E \equiv \sqrt{(xp_z)^2 + p_{\perp}^2} + \sqrt{((1-x)p_z)^2 + p_{\perp}^2} - p_z \simeq \frac{p_{\perp}^2}{2x(1-x)p_z}$$

Kinematics: Pseudo-rapidity

- Consider a particle with 3-momentum p; take z as the collision axis
- Detectors: transverse momentum p_{\perp} & polar angle θ (or pseudo-rapidity η)

 $\mathbf{p} = (p_x, p_y, p_z) = (\mathbf{p}_\perp, p_z)$

 $p_z = p\cos\theta, \ p_\perp = p\sin\theta$

$$\eta \equiv \frac{1}{2} \ln \frac{p + p_z}{p - p_z} = -\ln \tan \frac{\theta}{2}$$

• $\theta \to 0 \Rightarrow \eta \to \infty$: forward • $\theta = \frac{\pi}{2} \Rightarrow \eta = 0$: central

• $\theta \to \pi \Rightarrow \eta \to -\infty$: backward

• Exercice (easy): demonstrate that

 $p=m_{\perp}\cosh\eta\,,\ p_z=m_{\perp}\sinh\eta\,,\ ext{ with }\ m_{\perp}\equiv\sqrt{m^2+p_{\perp}^2}$

CGC & all that

Kinematics: Momentum rapidity

• The momentum (or proper) rapidity y is also useful: boost-covariant

$$y\equiv \ \frac{1}{2}\ln \frac{E+p_z}{E-p_z} \quad \text{with} \quad E=\sqrt{m^2+p_\perp^2+p_z^2}$$

• y transforms via a shift under a Lorentz boost along z :

 $E \to \gamma(E + \beta p_z), \quad p_z \to \gamma(p_z + \beta E) \implies y \to y + \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta}$

• $y = \eta$ for massless (or ultrarelativistic) particles: $E \simeq p$

- ullet experimentally, it is more convenient to measure angles: $\theta,\,\eta$
- conceptually, y turns out to be more useful: $\Delta y = \text{boost invariant}$
- These lectures: particles will always be ultrarelativistic : $y = \eta$
- Exercice: demonstrate that

$$E = p_{\perp} \cosh y$$
, $p_z = p_{\perp} \sinh y$

Kinematics: A hadron-hadron collision

• pp or nucleon–nucleon (NN) pair from a pA or AA collision

- z : longitudinal (or 'beam') axis; $\boldsymbol{x}_{\perp} = (x, y)$: transverse plane
- Center-of-mass frame : $P_1^{\mu} = (P, 0, 0, P)$, $P_2^{\mu} = (P, 0, 0, -P)$
 - high energy: particle masses are negligible: $E = \sqrt{P^2 + M^2} \simeq P$
 - huge boost factor $\gamma = E/M \sim 1000$ at the LHC: Lorentz contraction

• Center-of-mass energy squared : $s = (P_1 + P_2)^2 = 2P_1 \cdot P_2 = 4P^2$

A partonic subcollision

• To lowest order in perturbative QCD: a $2 \rightarrow 2$ subcollision

- e.g. $q(p_1) + q(p_2) \rightarrow q(k_1) + q(k_2)$
- Initial partons assumed to be collinear with the incoming hadrons

$$p_1^{\mu} = x_1(P, 0, 0, P), \qquad p_2^{\mu} = x_2(P, 0, 0, -P)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 k_{1\perp} \mathrm{d}^2 k_{2\perp} \mathrm{d}y_1 \mathrm{d}y_2} = \sum_{ij} \int \mathrm{d}x_1 \mathrm{d}x_2 f_{i/1}(x_1, \mu^2) f_{j/2}(x_2, \mu^2) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}^2 k_{1\perp} \mathrm{d}^2 k_{2\perp} \mathrm{d}y_1 \mathrm{d}y_2}$$

Initial parton kinematics

• The longitudinal fractions x_1 and x_2 of the incoming partons are fixed by the kinematics of the final state, via energy-momentum conservation

 $k_i^{\mu} = (E_i, \mathbf{k}_{i\perp}, k_{iz}), \ i = 1, 2$ $\mathbf{k}_{1\perp} + \mathbf{k}_{2\perp} = 0$ $E_1 + E_2 = (x_1 + x_2)P$ $k_{1z} + k_{2z} = (x_1 - x_2)P$ $E_i = \mathbf{k}_{\perp} \cosh \eta_i, \ \mathbf{k}_{iz} = \mathbf{k}_{\perp} \sinh \eta_i$

$$x_1 = \frac{k_{\perp}}{\sqrt{s}} (e^{\eta_1} + e^{\eta_2}), \quad x_2 = \frac{k_{\perp}}{\sqrt{s}} (e^{-\eta_1} + e^{-\eta_2})$$

- Forward rapidities, η_1 , $\eta_2 \gtrsim 1$, probe large x_1 , but small x_2
- Vice versa for the backward rapidities

Collinear factorization

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 k_{\perp} \mathrm{d}\eta_1 \mathrm{d}\eta_2} = \sum_{ij} x_1 f_i(x_1, \mu^2) \, x_2 f_j(x_2, \mu^2) \, \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}k_{\perp}^2}$$

- μ^2 : factorization scale (of order $k_{\perp}^2 \gg \Lambda_{\rm QCD}^2$)
- Leading-order pQCD: $\frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}k_{\perp}^2} \sim \frac{\alpha_s^2}{k_{\perp}^4} \Longrightarrow$ favours particles with low k_{\perp}
- The total cross-section (integrated over k_{\perp}) appears to be divergent

Charged hadron multiplicity in AA collisions

• *p_T* spectrum of charged particles produced in Pb+Pb at midrapidities and in different bins of centrality (arXiv:12082711, ALICE)

The importance of small-*x* partons

- Pb+Pb @ the LHC: p_T spectrum at midrapidities (arXiv:12082711, ALICE)
 - 99% of the total multiplicity lies at low momenta, below $p_{\perp}=2$ GeV

- $\left. \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}^2 p_{\perp} \mathrm{d}\eta} \right|_{\eta=0}$
- Take $p_\perp = 1~{\rm GeV}$ and $\eta = 0$
- $x \sim 5 \times 10^{-3}$ at RHIC ($\sqrt{s} = 200$ GeV)
- $x\sim 2\times 10^{-4}$ at the LHC ($\sqrt{s}=5~{\rm TeV})$
- Nuclei liberate thousands of partons with small $x \ll 1$
- Consistent with energy conservation

Also consistent with parton distributions measured in DIS at HERA

LHC: average p_{\perp} and multiplicity

• Multiplicity: divergent in collinear fact. ... but measured in the experiments

$$\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} = \int \mathrm{d}^2 p_\perp \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}^2 p_\perp \mathrm{d}\eta}$$

• "Controlled by $p_{\perp} \sim \Lambda_{\rm QCD} \sim 200$ MeV" ?? Not true, according to the data!

• Data suggests intrinsic p_{\perp} which grows like a power of the energy

LHC: average p_{\perp} and multiplicity

• Multiplicity: divergent in collinear fact. ... but measured in the experiments

$$rac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} = \int \mathrm{d}^2 p_\perp \, rac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}^2 p_\perp \mathrm{d}\eta}$$

• Average p_{\perp} in pp collisions: $\langle p_{\perp} \rangle \sim E^{0.115}$ (McLerran, Praszalowicz, 2010)

• Charged particle multiplicity in pp and AA: power law increase with s_{NN}

Deep Inelastic Scattering @ HERA & the EIC

Deep inelastic scattering

• Electron-proton (*ep*) collisions mediated by a virtual photon (γ^*)

 $q^{2} = (k - k')^{2} = -2EE'(1 - \cos \alpha) < 0$

$$\hat{s}\equiv (P+q)^2=M^2-Q^2+2P\cdot q$$

• 2 useful invariants:

$$Q^2 \equiv -q^2, \quad x_{\rm\scriptscriptstyle Bj} \equiv \frac{Q^2}{2P \cdot q}$$

• These 2 invariants control the resolution(s) of the virtual photon:

• γ^* couples to quarks with longitudinal momentum fraction $x=x_{\rm \scriptscriptstyle Bj}$ and with transverse momenta $k_{\perp}^2\leq Q^2$

- A fine probe of the parton distribution functions (PDFs) in the proton
- Electron-Ion Collider (\sim 2035): similar measurements of the nuclear PDFs

Longitudinal resolution: small x

- Work in a target infinite momentum frame: $P^{\mu} = (P, 0, 0, P)$
- Struck quark (roughly) collinear with the proton: $p^{\mu} = x P^{\mu}$
- The quark is on shell both before and after absorbing the photon

• High DIS energy: $\hat{s} \simeq 2P \cdot q \gg Q^2 \gtrsim M^2 \iff \text{small } x \ll 1$

Transverse resolution: Bjorken frame

- One needs to more carefully specify the kinematics & and the frame
- Parton intrinsic p_{\perp} plays a role: $p^{\mu} = (xP, p_{\perp}, xP)$
- A target infinite momentum frame $P^{\mu} = (P, 0, 0, P) \dots$ but which one ?
- Bjorken frame: the photon carries "only" transverse momentum q_{\perp}

$$q^{\mu} = (q_0 \simeq 0, \, \boldsymbol{q}_{\perp}, q_z = 0), \quad Q^2 \simeq q_{\perp}^2$$

- The photon is absorbed over a transverse distance $\Delta x_\perp \sim 1/Q$
- ullet The quark transverse size $\lambda_\perp \sim 1/p_\perp$ must be larger

$$\Delta x_{\perp} \sim \frac{1}{Q} \lesssim \lambda_{\perp} \sim \frac{1}{p_{\perp}}$$

• γ^* couples to quarks having

$$p_{\perp}^2 \lesssim Q^2$$

Transverse resolution: Breit frame

- Parton intrinsic p_{\perp} plays a role: $p^{\mu} = (xP, p_{\perp}, xP)$
- Breit frame: the photon carries only longitudinal momentum q_z

$$q^{\mu} = (0, 0, 0, q_z = -Q), \quad x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2PQ} \Rightarrow xP = \frac{Q}{2}$$

- The photon is absorbed over a time $\Delta t_{
 m coll} \sim 1/Q$
- The lifetime Δt_q of the quark fluctuation must be larger

• After collision, the struck quark propagates in the photon direction:

$$p'_{z} = p_{z} + q_{z} = \frac{Q}{2} - Q = -\frac{Q}{2}$$

Parton distributions

- DIS allows us to measure the parton distributions: $f_i(x,Q^2)$, $i=q, \bar{q}, g$
- The number of partons with longitudinal momentum fraction x and any transverse momentum $p_{\perp} \lesssim Q$:

$$xf_i(x,Q^2) = \int^Q d^2 p_\perp \ x \frac{dN_i}{dxd^2p_\perp} = \begin{cases} xq(x,Q^2) & \text{for } i = q, \\ xG(x,Q^2) & \text{for } i = g. \end{cases}$$

• The cross-section for virtual photon absorption by the proton:

$$\sigma_{\gamma^* p}(x, Q^2) = \frac{4\pi^2 \alpha_{\rm em}}{Q^2} \underbrace{\sum_{f=u,d,s...} e_f^2 \left[xq_f(x, Q^2) + x\bar{q}_f(x, Q^2) \right]}_{F_2(x, Q^2)}$$

- Valid to leading order in $1/Q^2$ for $Q^2 \gg \Lambda^2$ ("leading twist")
- Gluons are indirectly measured, via their effect on quark distribution

Parton evolution in QCD

- Quantum evolution: change in the partonic content when changing the resolution scales x and Q^2 , due to additional radiation
- Perturbative QCD applicable for sufficiently large $Q^2 \gg \Lambda^2$
- Higher-order corrections, but enhanced by large kinematical logarithms

Parton distributions at HERA

• Fits to $F_2(x,Q^2)$ using the DGLAP evolution

• For $x \le 0.01$ the hadron wavefunction contains mostly gluons !

• the virtual photon is absorbed by a sea quark (g
ightarrow q ar q)

Parton distributions at HERA

• Fits to $F_2(x,Q^2)$ using the DGLAP evolution

• Gluon distribution measured at HERA rises roughly like a power of 1/x:

$$xG(x,Q^2) \propto \frac{1}{x^{\lambda}}$$
 with $\lambda \simeq 0.20 \div 0.25$

• Can one understand this rise from (perturbative) QCD ?

Bremsstrahlung

 A quark (e.g. a valence quark from the proton) emits a gluon with longitudinal momentum fraction x ≤ 1, and transverse momentum k_⊥

$$p_z, \mathbf{p}_\perp = 0$$
 $(1-x)p_z, -\mathbf{k}_\perp$
 $d\mathcal{P} \simeq \frac{\alpha_s}{2\pi} \frac{\mathrm{d}k_\perp^2}{k_\perp^2} P_{q \to g}(x) \mathrm{d}x$
 $k_z = xp_z, \mathbf{k}_\perp$ $P_{q \to g}(x) \equiv C_F \frac{1 + (1-x)^2}{x}$

• Logarithmic enhancement for large- k_{\perp} emissions $(p^2 \sim \Lambda^2 < k_{\perp}^2 < Q^2)$:

$$\int_{\Lambda^2}^{Q^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \ln \frac{Q^2}{\Lambda^2}$$

• ... and also for soft/low-energy (x o 0) gluons: $P_{q o g}(x) \simeq 2C_F/x$

$$\int_{x_0}^1 \frac{\mathrm{d}x}{x} = \ln \frac{1}{x_0} \equiv Y_0$$

Bremsstrahlung

 A quark (e.g. a valence quark from the proton) emits a gluon with longitudinal momentum fraction x ≤ 1, and transverse momentum k_⊥

$$p_z, \mathbf{p}_\perp = 0$$
 $(1-x)p_z, -\mathbf{k}_\perp$ $d\mathcal{P} \simeq \frac{\alpha_s}{2\pi} \frac{dk_\perp^2}{k_\perp^2} P_{q \to g}(x) dx$
 $k_z = xp_z, \mathbf{k}_\perp$ $P_{q \to g}(x) \equiv C_F \frac{1 + (1-x)^2}{x}$

• Logarithmic enhancement for large- k_{\perp} emissions ($p^2 \sim \Lambda^2 < k_{\perp}^2 < Q^2$):

$$\int_{\Lambda^2}^{Q^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \ln \frac{Q^2}{\Lambda^2}$$

• Emissions of soft quarks are not enhanced: $\xi \equiv 1 - x \ll 1$

$$P_{q \to q}(\xi) = P_{q \to g}(x = 1 - \xi) = C_F \frac{1 + \xi^2}{1 - \xi}$$

Gluon splitting

$$\begin{array}{c} (1-x)p_z, -\mathbf{k}_{\perp} \\ p_z, \mathbf{p}_{\perp} = 0 \\ \hline 0 \\$$

• Logarithmic singularities for both $x \to 0$ and $x \to 1$

• symmetry: $x \leftrightarrow 1 - x \Rightarrow$ choose $x \ll 1$ and multiply by 2

$$\begin{array}{l} p_z, \mathbf{p}_\perp = 0 & p_z, -\mathbf{k}_\perp \\ \hline \mathbf{0} \hline \mathbf{$$

• Soft gluons can act as sources for even softer ones: high-energy evolution

Gluon distribution at small x

$$xG(x,Q^2) = \int^Q \mathrm{d}^2 oldsymbol{k}_\perp x rac{\mathrm{d}N_{\mathrm{gluon}}}{\mathrm{d}x\mathrm{d}^2 k_\perp}$$

• To leading order in α_s : single (soft) gluon emission by a quark

$\mathrm{d}N^{(0)}_{\mathrm{gluon}}$	$\alpha_s C_F$	1	1
$\frac{1}{\mathrm{d}x\mathrm{d}^2k_\perp} =$	π	\overline{x}	$\overline{k_{\perp}^2}$

• "unintegrated gluon distribution"

• number of gluons with fixed values for both the longitudinal momentum (xP) and the transverse momentum (k_{\perp})

Gluon distribution at small x

$$xG^{(0)}(x,Q^2) = \frac{\alpha_s C_F}{\pi} \int_{\Lambda^2}^{Q^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \frac{\alpha_s C_F}{\pi} \ln \frac{Q^2}{\Lambda^2}$$

• To leading order in α_s : single (soft) gluon emission by a quark

$\mathrm{d}N^{(0)}_\mathrm{gluon}$	$\alpha_s C_F$	1	1
$\overline{\mathrm{d}x\mathrm{d}^2k_\perp} =$	π	\overline{x}	$\overline{k_{\perp}^2}$

• "unintegrated gluon distribution"

- number of gluons with fixed values for both the longitudinal momentum (xP) and the transverse momentum (k_{\perp})
- The leading-order gluon distribution $xG^{(0)}(x,Q^2)$:
 - the first 'transverse' logarithm of the DGLAP evolution
 - $\bullet \,$ independent of x

BFKL evolution (Balitsky, Fadin, Kuraev, Lipatov, 1974-78)

- The *x*-dependence enters via the quantum evolution
- $\bullet\,$ Two successive gluon emissions, strongly ordered in x

- $Y \equiv \ln(1/x)$: rapidity difference between parent quark and final gluon
- When $\alpha_s Y \sim \mathcal{O}(1) \Rightarrow$ need for resummation: arbitrary many emissions

• a *n*-gluon cascade:

$$\frac{1}{n!} \left(\bar{\alpha} Y \right)^n, \quad \bar{\alpha} \equiv \frac{\alpha_s N_c}{\pi}$$

• sum over $n \Rightarrow$ an exponential:

$$x G(x,Q^2) \,\propto\, {\rm e}^{\lambda \bar{\alpha} Y}$$

Coherence in the parton cascades

- The parton cascades in pQCD feature quantum coherence
 - partons overlap in time and possibly also in space
- Successive parton emissions are strongly ordered in lifetimes

$$\Delta t_n \sim \frac{2x_n P}{k_{n\perp}^2}$$

$$\Delta t_n \ll \Delta t_{n-1}$$

- BFKL cascades: $x_n \ll x_{n-1}$, but no ordering in k_\perp
- DGLAP cascades: $k_{n\perp}^2 \gg k_{(n-1)\perp}^2$, but no strong ordering in x
- Yet, the physical consequences are very different in the two cases !

Overlapping gluons

- A gluon w/ transverse momentum k_{\perp} and longitudinal momentum $k_z = xP$
 - occupies a transverse area $\Delta x_{\perp}^2 \sim 1/k_{\perp}^2$
 - and has a longitudinal extent $\Delta z \sim 1/(xP)$

• DGLAP evolution maintains a dilute system of partons

 $\bullet\,$ rapid decrease in their transverse sizes \Longrightarrow no possible overlap

Overlapping gluons

- A gluon w/ transverse momentum k_{\perp} and longitudinal momentum $k_z = xP$
 - occupies a transverse area $\Delta x_{\perp}^2 \sim 1/k_{\perp}^2$
 - ullet and has a longitudinal extent $\Delta z \sim 1/(xP)$

• BFKL evolution leads to an increasing density

• gluons which overlap can interact

Gluon occupancy

• Gluons mutual interactions are measured by their occupation number

$$n(x, \boldsymbol{k}_{\perp}, \boldsymbol{x}_{\perp}) \equiv \frac{(2\pi)^3}{2(N_c^2 - 1)} \ x \frac{\mathrm{d}N_{\mathrm{gluon}}}{\mathrm{d}x \,\mathrm{d}^2 \boldsymbol{k}_{\perp} \mathrm{d}^2 \boldsymbol{x}_{\perp}}$$

• the unintegrated gluon distribution per unit transverse area

- When $n\gtrsim 1$, gluons overlap, but their interactions are still suppressed by $lpha_s$
- Interactions become of $\mathcal{O}(1)$ when $n \sim 1/\alpha_s$

Non-linear evolution towards saturation

• When $n \ll 1/\alpha_s$, interactions are weak \Longrightarrow linear evolution

- BFKL: $Y \equiv \ln(1/x)$ $\frac{\partial n}{\partial Y} = \omega \alpha_s n \implies n \propto e^{\omega \alpha_s Y}$
- Rapid gluon multiplication: $g \rightarrow gg$

Non-linear evolution towards saturation

• When $n \ll 1/\alpha_s$, interactions are weak \Longrightarrow linear evolution

Non-linear evolution: BK-JIMWLK

$$\frac{\partial n}{\partial Y} = \omega \alpha_s n - \alpha_s^2 n^2$$

• Non-linear term taming the growth

- When $n \sim 1/\alpha_s$: non-linear effects like gluon recombination $gg \rightarrow g$
- A functional equation ↔ an infinite hierarchy for multi-gluon correlations (Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)
 - mean field approximation \Rightarrow a closed equation: Balitsky-Kovchegov

Non-linear evolution towards saturation

• When $n \ll 1/\alpha_s$, interactions are weak \Longrightarrow linear evolution

• Non-linear evolution: BK-JIMWLK

$$\frac{\partial n}{\partial Y} = \omega \alpha_s n - \alpha_s^2 n^2$$

• Saturation fixed point:

$$rac{\partial n}{\partial Y}\sim 0~~{
m when}~n\sim rac{1}{lpha_s}$$

 \bullet Saturation momentum: $n(x,Q^2) \sim 1/\alpha_s$ when $Q^2 = Q_s^2(x)$

$$Q_s^2(x) \simeq \alpha_s \frac{xG(x,Q_s^2)}{\pi R^2} \sim \frac{1}{x^{\lambda_s}} \quad \text{with} \quad \lambda_s \simeq 0.2 \div 0.3$$

• Saturation exponent $\lambda_s \sim 0.2$: confirmed by NLO studies of BK equation

Saturation momentum

• For a large nucleus $(A \gg 1)$: additional enhancement $\sim A^{1/3}$

$$Q_s^2(x,A) \simeq lpha_s rac{x G_A(x,Q_s^2)}{\pi R_A^2} \sim rac{A^{1/3}}{x^{\lambda_s}}$$

• $x \sim 10^{-3}$ (EIC): $Q_s^2 \sim 2$ GeV² for Pb or Au

• $x \sim 10^{-5}$ (LHC): $Q_s^2 \sim 10~{\rm GeV^2}$ for Pb and $\sim 1~{\rm GeV^2}$ for a proton

Saturation momentum

• For a large nucleus $(A \gg 1)$: additional enhancement $\sim A^{1/3}$

$$Q_s^2(x,A) \simeq lpha_s rac{x G_A(x,Q_s^2)}{\pi R_A^2} \sim rac{A^{1/3}}{x^{\lambda_s}}$$

• $Q_s(x, A)$: typical transverse momentum for the gluons with a given $x \ll 1$

• One can (at least, marginally) study gluon saturation in pQCD

Geometric scaling at HERA

- DIS cross-section $\sigma(x,Q^2)$ is a priori a function of 2 variables
- At small x, proton structure involves one intrinsic scale $Q_s(x)$
 - \implies physics should depend upon the ratio $Q^2/Q_s^2(x)$: geometric scaling

Geometric scaling at HERA

- DIS cross-section $\sigma(x,Q^2)$ is a priori a function of 2 variables
- DIS cross-section at HERA (Stasto, Golec-Biernat, Kwieciński, 2000) $\sigma(x, Q^2)$ vs. $\tau \equiv Q^2/Q_s^2(x) \propto Q^2 x^{0.3}$: $x \leq 0.01$, $Q^2 \leq 450$ GeV²

• Left: data in (x, Q^2) plane. Right: cross-section as a function of τ

Geometric scaling at HERA

• DIS cross-section $\sigma(x, Q^2)$ is a priori a function of 2 variables

- No scaling for the HERA data corresponding to larger values x > 0.01
- Theory (CGC): E.I., Itakura, McLerran, '02; Mueller, Triantafyllopoulos, '02

Multiplicity : pp, pA, AA

- Particle multiplicity $dN/d\eta$: number of hadrons per unit rapidity near $\eta = 0$
- Saturated gluons which are released by the collision and hadronise

Qualitatively consistent with the data